269 research outputs found

    The ALBI score: From liver function in patients with HCC to a general measure of liver function

    Get PDF
    The (albumin-bilirubin) 'ALBI' score is an index of 'liver function' that was recently developed to assess prognosis in patients with hepatocellular carcinoma, irrespective of the degree of underlying liver fibrosis. Other measures of liver function, such as model for end-stage liver disease (MELD) and Child-Pugh score, which were introduced for specific clinical scenarios, have seen their use extended to other areas of hepatology. In the case of ALBI, its application has been increasingly extended to chronic liver disease in general and in some instances to non-liver diseases where it has proven remarkably accurate in terms of prognosis. With respect to chronic liver disease, numerous publications have shown that ALBI is highly prognostic in patients with all types and stages of chronic liver disease. Outside of liver disease, ALBI has been reported as being of prognostic value in conditions ranging from chronic heart failure to brain tumours. Whilst in several of these reports, explanations for the relationship of liver function to a clinical condition have been proposed, it has to be acknowledged that the specificity of ALBI for liver function has not been clearly demonstrated. Nonetheless, and similar to the MELD and Child-Pugh scores, the lack of any mechanistic basis for ALBI's clinical utility does not preclude it from being clinically useful in certain situations. Why albumin and bilirubin levels, or a combination thereof, are prognostic in so many different diseases should be studied in the future

    Quorum-dependent expression of rsmX and rsmY, small non-coding RNAs, in Pseudomonas syringae

    Get PDF
    Pseudomonas syringae pathovars are known to produce N-acyl-homoserine lactones (AHL) as quorum-sensing molecules. However, many isolates, including P. syringae pv. tomato DC3000 (PtoDC3000), do not produce them. In P. syringae, psyI, which encodes an AHL synthase, and psyR, which encodes the transcription factor PsyR required for activation of psyI, are convergently transcribed. In P. amygdali pv. tabaci 6605 (Pta6605), there is one nucleotide between the stop codons of both psyI and psyR. However, the canonical stop codon for psyI in PtoDC3000 was converted to the cysteine codon by one nucleotide deletion, and 23 additional amino acids extended it to a C-terminal end. This resulted in overlapping of the open reading frame (ORF) for psyI and psyR. On the other hand, stop codons in the psyR ORF of P. syringae 7 isolates, including pv. phaseolicola and pv. glycinea, were found. These results indicate that many pathovars of P. syringae have genetically lost AHL production ability by the mutation of their responsible genes. To examine whether PtoDC3000 modulates the gene expression profile in a population-dependent manner, we carried out microarray analysis using RNAs prepared from low- and high-density cells. We found the expressions of rsmX and rsmY remarkably activated in high-density cells. The activated expressions of rsmX and rsmY were confirmed by Northern blot hybridization, but these expressions were abolished in a ΔgacA mutant of Pta6605. These results indicate that regardless of the ability to produce AHL, P. syringae regulates expression of the small noncoding RNAs rsmX/Y by currently unknown quorum-sensing molecules

    Requirement of γ-Aminobutyric Acid Chemotaxis for Virulence of Pseudomonas syringae pv. tabaci 6605

    Get PDF
    γ-Aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid that accumulates in plants under biotic and abiotic stress conditions. Recent studies suggested that GABA also functions as an intracellular signaling molecule in plants and in signals mediating interactions between plants and phytopathogenic bacteria. However, the molecular mechanisms underlying GABA responses to bacterial pathogens remain unknown. In the present study, a GABA receptor, named McpG, was conserved in the highly motile plant-pathogenic bacteria Pseudomonas syringae pv. tabaci 6605 (Pta6605). We generated a deletion mutant of McpG to further investigate its involvement in GABA chemotaxis using quantitative capillary and qualitative plate assays. The wild-type strain of Pta6605 was attracted to GABA, while the ΔmcpG mutant abolished chemotaxis to 10‍ ‍mM GABA. However, ΔmcpG retained chemotaxis to proteinogenic amino acids and succinic semialdehyde, a structural analog of GABA. Furthermore, ΔmcpG was unable to effectively induce disease on host tobacco plants in three plant inoculation assays: flood, dip, and infiltration inoculations. These results revealed that the GABA sensing of Pta6605 is important for the interaction of Pta6605 with its host tobacco plant

    HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509'

    Get PDF
    Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host & apos;s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta increment hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta increment hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509

    Identification of Aerotaxis Receptor Proteins Involved in Host Plant Infection by Pseudomonas syringae pv. tabaci 6605

    Get PDF
    Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605

    Serologic Detection of Hepatocellular Carcinoma: Application of Machine Learning and Implications for Diagnostic Models.

    Get PDF
    PurposeThe gender, age, lens culinaris agglutinin-reactive fraction of alphafetoprotein, alphafetoprotein, des-gamma-carboxyprothrombin (GALAD) score is a biomarker-based statistical model for the serologic diagnosis of hepatocellular carcinoma (HCC) that has been developed and validated using the case-control approach with a view to early detection. Performance has, however, been suboptimal in the first prospective studies which better reflect the real-world situation. In this article, we report the application of machine learning to a large, prospectively accrued, HCC surveillance data set.Patients and methodsModels were built on a cohort of 3,473 patients with chronic liver disease within a rigorous surveillance program between 1998 and 2014, during which 459 patients with HCC were detected. Two random forest (RF) models were trained. The first RF model uses the same variables as the original GALAD model (GALAD-RF); the second is based on routinely available clinical and laboratory features (RF-practical). For comparison, we evaluated a logistic regression GALAD model trained on this longitudinal prospective data set (termed GALAD-Ogaki).ResultsModels were evaluated using a repetitive cross-validation approach with the metrics averaged over 100 independent runs. As judged by area under the receiver operator curve (AUROC) and F1 score, the GALAD RF model significantly outperformed the original GALAD model. The RF-practical model also outperformed the original GALAD model in terms of both AUROC and F1 score, and both models outperformed the individual biomarkers. An online web application that implemented the GALAD-RF and RF-practical models is presented.ConclusionRF-based models improve on the diagnostic performance of the original GALAD model in the setting of a standard HCC surveillance program. Further prospective validation studies are warranted using these models and could be expanded to offer prediction of risk of HCC development over defined periods of time

    Positive chemotaxis to plant apoplastic fluids of Pseudomonas syringae pv. tabaci 6605 and metabolome analysis

    Get PDF
    Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants. Although chemotaxis has been shown to be necessary for Pta6605 in tobacco infection, the chemoattractants at the site of infection are unclear. Pta6605 was attracted to the apoplastic fluid from not only host tobacco leaves but also non-host plant leaves, indicating that Pta6605 is attracted to common plant metabolites. Metabolome analysis of apoplastic fluid from tobacco leaves revealed that amino acids including γ-aminobutyric acid and organic acids are abundant, suggesting that these compounds are potential chemoattractants

    Complete Genome Sequence of Pseudomonas amygdali pv. tabaci Strain 6605, a Causal Agent of Tobacco Wildfire Disease

    Get PDF
    Pseudomonas amygdali pv. tabaci strain 6605 is the bacterial pathogen causing tobacco wildfire disease that has been used as a model for elucidating virulence mechanisms. Here, we present the complete genome sequence of P. amygdali pv. tabaci 6605 as a circular chromosome from reads using a PacBio sequencer

    PsyR, a transcriptional regulator in quorum sensing system, binds lux box-like sequence in psyI promoter without AHL quorum sensing molecule and activates psyI transcription with AHL in Pseudomonas syringae pv. tabaci 6605

    Get PDF
    Quorum sensing (QS) is a mechanism for bacterial cell-cell communication using QS signals. N-acyl-homoserine lactones (AHLs), QS signals in Pseudomonas syringae pv. tabaci (Pta) 6605, are synthesized by an AHL synthase (PsyI) and recognized by the cognate transcription factor PsyR. To reveal the role of PsyR in virulence, we generated a psyR mutant and complemented strains of Pta 6605 and found that the psyR mutant is remarkably reduced in AHL production and ability to cause disease and propagate in host tobacco leaves. The phenotypes of complemented strains were restored to that of the wild type (WT). Because the psyR mutant lost nearly all AHL production, we investigated the function of PsyR in the transcription of psyI and production of AHL. Electrophoretic mobility shift assays suggested that the recombinant PsyR protein binds the promoter region of psyI but not psyR without AHL. The addition of AHL did not significantly affect this binding. The binding core sequence of this region was identified as a 20-bp lux box-like sequence. To reveal the function of PsyR and AHL on psyI transcription, we constructed a psyI promoter::lacZYA chimeric reporter gene, and inserted it into the WT and psyI mutant of Pta 6605. beta-galactosidase activity increased in a bacterial density-dependent manner in the WT and also in a psyI mutant after the addition of exogenous AHL. These results indicate that the solo PsyR binds the lux box in the psyI promoter and activates transcription in the concomitant presence of AHL
    corecore