1,710 research outputs found

    Dynamics of quantum adiabatic evolution algorithm for Number Partitioning

    Full text link
    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size nn. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxilary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap, gmin=O(n2−n/2)g_{\rm min}={\cal O}(n 2^{-n/2}), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simulteneous fipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimenssional quantum diffusion in the energy space. This effect provides a general limitation on the power of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.Comment: 32 pages, 5 figures, 3 Appendices; List of additions compare to v.3: (i) numerical solution of the stationary Schroedinger equation for the adiabatic eigenstates and eigenvalues; (ii) connection between the scaling law of the minimum gap with the problem size and the shape of the coarse-grained distribution of the adiabatic eigenvalues at the avoided-crossing poin

    X-ray photoelectron emission microscopy in combination with x-ray magnetic circular dichroism investigation of size effects on field-induced N\'eel-cap reversal

    Full text link
    X-ray photoelectron emission microscopy in combination with x-ray magnetic circular dichroism is used to investigate the influence of an applied magnetic field on N\'eel caps (i.e., surface terminations of asymmetric Bloch walls). Self-assembled micron-sized Fe(110) dots displaying a moderate distribution of size and aspect ratios serve as model objects. Investigations of remanent states after application of an applied field along the direction of N\'eel-cap magnetization give clear evidence for the magnetization reversal of the N\'eel caps around 120 mT, with a ±\pm20 mT dispersion. No clear correlation could be found between the value of the reversal field and geometrical features of the dots

    Third type of domain wall in soft magnetic nanostrips

    Full text link
    Magnetic domain walls (DWs) in nanostructures are low-dimensional objects that separate regions with uniform magnetisation. Since they can have different shapes and widths, DWs are an exciting playground for fundamental research, and became in the past years the subject of intense works, mainly focused on controlling, manipulating, and moving their internal magnetic configuration. In nanostrips with in-plane magnetisation, two DWs have been identified: in thin and narrow strips, transverse walls are energetically favored, while in thicker and wider strips vortex walls have lower energy. The associated phase diagram is now well established and often used to predict the low-energy magnetic configuration in a given magnetic nanostructure. However, besides the transverse and vortex walls, we find numerically that another type of wall exists in permalloy nanostrips. This third type of DW is characterised by a three-dimensional, flux closure micromagnetic structure with an unusual length and three internal degrees of freedom. Magnetic imaging on lithographically-patterned permalloy nanostrips confirms these predictions and shows that these DWs can be moved with an external magnetic field of about 1mT. An extended phase diagram describing the regions of stability of all known types of DWs in permalloy nanostrips is provided.Comment: 19 pages, 7 figure

    A numeric solution for metric-affine gravity and Einstein's gravitational theory with Proca matter

    Full text link
    A special case of metric-affine gauge theory of gravity (MAG) is equivalent to general relativity with Proca matter as source. We study in detail a corresponding numeric solution of the Reissner-Nordstr"om type. It is static, spherically symmetric, and of electric type. In particular, this solution has no horizon, so it has a naked singularity as its origin.Comment: LaTeX2e, 20 pages, 22 figure

    Towards computing low-makespan solutions for multi-arm multi-task planning problems

    Full text link
    We propose an approach to find low-makespan solutions to multi-robot multi-task planning problems in environments where robots block each other from completing tasks simultaneously. We introduce a formulation of the problem that allows for an approach based on greedy descent with random restarts for generation of the task assignment and task sequence. We then use a multi-agent path planner to evaluate the makespan of a given assignment and sequence. The planner decomposes the problem into multiple simple subproblems that only contain a single robots and a single task, and can thus be solved quickly to produce a solution for a fixed task sequence. The solutions to the subproblems are then combined to form a valid solution to the original problem. We showcase the approach on robotic stippling and robotic bin picking with up to 4 robot arms. The makespan of the solutions found by our algorithm are up to 30% lower compared to a greedy approach.Comment: Workshop for Planning and Robotics (PlanRob), International Conference on Automated Planning and Scheduling (ICAPS), 202

    Phase diagram of magnetic domain walls in spin valve nano-stripes

    Full text link
    We investigate numerically the transverse versus vortex phase diagram of head-to-head domain walls in Co/Cu/Py spin valve nano-stripes (Py: Permalloy), in which the Co layer is mostly single domain while the Py layer hosts the domain wall. The range of stability of the transverse wall is shifted towards larger thickness compared to single Py layers, due to a magnetostatic screening effect between the two layers. An approached analytical scaling law is derived, which reproduces faithfully the phase diagram.Comment: 4 page

    Chiral nature of magnetic monopoles in artificial spin ice

    Full text link
    Micromagnetic properties of monopoles in artificial kagome spin ice systems are investigated using numerical simulations. We show that micromagnetics brings additional complexity into the physics of these monopoles that is, by essence, absent in spin models: besides a fractionalized classical magnetic charge, monopoles in the artificial kagome ice are chiral at remanence. Our simulations predict that the chirality of these monopoles can be controlled without altering their charge state. This chirality breaks the vertex symmetry and triggers a directional motion of the monopole under an applied magnetic field. Our results also show that the choice of the geometrical features of the lattice can be used to turn on and off this chirality, thus allowing the investigation of chiral and achiral monopoles.Comment: 10 pages, 4 figure

    Internet Outreach / A Guide for Health Promoters & Peer Educators

    Get PDF
    This manual brings together the experiences of an Internet outreach project conducted by theWestern Australian AIDS Council (WAAC) and the Western Australian Centre for Health PromotionResearch (WACHPR) at Curtin University of Technology along with other selected research. It presents guidelines on the development and implementation of Internet outreach programs for health promotion practitioners and peer education workers.It is divided into sections for ease of navigation, including an overview of Internet outreach as a health promotion strategy and the CyberReach project (through the implementation of which the contents were produced). There are additional components to support agencies interested in learning more about whether Internet outreach may be a useful strategy for them in expanding the range of their current services.Who this manual is for: Anyone working in health service delivery with an interest in developing Internet-based health promotion outreach programs. Although based on a project targeting same sex attracted youth (SSAY) and men who have sex with men (MSM), we believe there are aspects applicable to health practitioners working with other groups in a range of health and human services areas
    • …
    corecore