18 research outputs found

    Genomic Characterization of Campylobacter jejuni Strain M1

    Get PDF
    Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1

    Changes in the carriage of <i>Campylobacter</i> strains by poultry carcasses during processing in abattoirs

    No full text
    The recent development of simple, rapid genotyping techniques for Campylobacter species has enabled investigation of the determinative epidemiology of these organisms in a variety of situations. In this study we have used the technique of fla typing (PCR-restriction fragment length polymorphism analysis of the flaA and flaB genes) to identify the sources of strains contaminating the carcasses of five campylobacter-positive and two campylobacter-negative broiler flocks during abattoir processing. The results confirmed that, in the United Kingdom, individual broiler flocks are colonized by a limited number of subtypes of Campylobacter jejuni or C. coli. In some but not all cases, the same subtypes, isolated from the ceca, contaminated the end product as observed in carcass washes. However, the culture methodology, i.e, use of direct plating or enrichment, affected this subtype distribution. Moreover, the number of isolates analyzed per sample was limited. fla typing also indicated that some campylobacter subtypes survive poultry processing better than others. The extent of resistance to the environmental stresses during processing varied between strains. The more robust subtypes appeared to contaminate the abattoir environment, surviving through carcass chilling, and even carrying over onto subsequent flocks. From these studies it is confirmed that some campylobacter-negative flocks reach the abattoir but the carcasses from such flocks are rapidly contaminated by various campylobacter subtypes during processing. However, only some of these contaminating subtypes appeared to survive processing. The sources of this contamination are not clear, but in both negative flocks, campylobacters of the same subtypes as those recovered from the carcasses were isolated from the crates used to transport the birds. In one case, this crate contamination was shown to be present before the birds were loaded

    AFLP on strains isolated from abattoir.

    No full text
    <p>Isolates were from flock 1 (designated F1) and flock 2 (F2) and a selection of caecal isolates and crate swabs is shown. Two AFLP banding patterns were recognized of which the lower one is identical to that of the human isolate M1.</p

    Blast Atlas of <i>C. jejuni M1</i>.

    No full text
    <p>The proteome of the M1 strain was aligned against the proteomes of 20 other <i>Campylobacter</i> genomes using BLASTP and the results are displayed as colored circles with increasing color intensity signifying increased similarity. Only BLAST results of proteins are shown. The three rRNA islands are marked as well as the lipooligosaccharide (LOS) and extracellular polysaccharide biosynthesis (PBS) clusters.</p
    corecore