4,653 research outputs found

    Accurate lubrication corrections for spherical and non-spherical particles in discretized fluid simulations

    Get PDF
    Discretized fluid solvers coupled to a Newtonian dynamics method are a popular tool to study suspension flow. As any simulation technique with finite resolution, the lattice Boltzmann method, when coupled to discrete particles using the momentum exchange method, resolves the diverging lubrication interactions between surfaces near contact only insufficiently. For spheres, it is common practice to account for surface-normal lubrication forces by means of an explicit correction term. A method that additionally covers all further singular interactions for spheres is present in the literature as well as a link-based approach that allows for more general shapes but does not capture non-normal interactions correctly. In this paper, lattice-independent lubrication corrections for aspherical particles are outlined, taking into account all leading divergent interaction terms. An efficient implementation for arbitrary spheroids is presented and compared to purely normal and link-based models. Good consistency with Stokesian dynamics simulations of spheres is found. The non-normal interactions affect the viscosity of suspensions of spheres at volume fractions \Phi >= 0.3 but already at \Phi >= 0.2 for spheroids. Regarding shear-induced diffusion of spheres, a distinct effect is found at 0.1 <= \Phi <= 0.5 and even increasing the resolution of the radius to 8 lattice units is no substitute for an accurate modeling of non-normal interactions.Comment: 19 pages, 10 figure

    Helicity Transfer in Turbulent Models

    Full text link
    Helicity transfer in a shell model of turbulence is investigated. We show that a Reynolds-independent helicity flux is present in the model when the large scale forcing breaks inversion symmetry. The equivalent in Shell Models of the ``2/15 law'', obtained from helicity conservation in Navier-Stokes eqs., is derived and tested. The odd part of helicity flux statistic is found to be dominated by a few very intense events. In a particular model, we calculate analytically leading and sub-leading contribution to the scaling of triple velocity correlation.Comment: 4 pages, LaTex, 2 figure

    Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence

    Get PDF
    We present a numerical study of two-particle dispersion from point-sources in 3D incompressible Homogeneous and Isotropic turbulence, at Reynolds number Re \simeq 300. Tracer particles are emitted in bunches from localized sources smaller than the Kolmogorov scale. We report the first quantitative evidence, supported by an unprecedented statistics, of the deviations of relative dispersion from Richardson's picture. Deviations are due to extreme events of pairs separating much faster than average, and of pairs remaining close for long times. The two classes of events are the fingerprint of complete different physics, the former being dominated by inertial subrange and large-scale fluctuations, while the latter by the dissipation subrange. A comparison of relative separation in surrogate white-in-time velocity field, with correct viscous-, inertial- and integral-scale properties allows us to assess the importance of temporal correlations along tracer trajectories.Comment: 5 pages, 6 figure

    Intermittency in Turbulence: Multiplicative random process in space and time

    Full text link
    We present a simple stochastic algorithm for generating multiplicative processes with multiscaling both in space and in time. With this algorithm we are able to reproduce a synthetic signal with the same space and time correlation as the one coming from shell models for turbulence and the one coming from a turbulent velocity field in a quasi-Lagrangian reference frame.Comment: 23 pages, 12 figure

    Helicity advection in Turbulent Models

    Full text link
    Helicity transfer in a shell model of turbulence is investigated. In particular, we study the scaling behavior of helicity transfer in a dynamical model of turbulence lacking inversion symmetry. We present some phenomenological and numerical support to the idea that Helicity becomes -at scale small enough- a passively-advected quantity.Comment: 6 pages, 2 figures, contribution to the proceedings of the conference: Disorder and Chaos, in honour of Giovanni Paladin, September 22-24, 1997, Rom

    Towards a continuum model for particle-induced velocity fluctuations in suspension flow through a stenosed geometry

    Get PDF
    Non-particulate continuum descriptions allow for computationally efficient modeling of suspension flows at scales that are inaccessible to more detailed particulate approaches. It is well known that the presence of particles influences the effective viscosity of a suspension and that this effect has thus to be accounted for in macroscopic continuum models. The present paper aims at developing a non-particulate model that reproduces not only the rheology but also the cell-induced velocity fluctuations, responsible for enhanced diffusivity. The results are obtained from a coarse-grained blood model based on the lattice Boltzmann method. The benchmark system comprises a flow between two parallel plates with one of them featuring a smooth obstacle imitating a stenosis. Appropriate boundary conditions are developed for the particulate model to generate equilibrated cell configurations mimicking an infinite channel in front of the stenosis. The averaged flow field in the bulk of the channel can be described well by a non-particulate simulation with a matched viscosity. We show that our proposed phenomenological model is capable to reproduce many features of the velocity fluctuations.Comment: 6 pages, 6 figure
    • …
    corecore