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We present a numerical study of two-particle dispersion from point sources in three-dimensional

incompressible homogeneous and isotropic turbulence at Reynolds number Re ’ 300. Tracer particles are

emitted in bunches from localized sources smaller than the Kolmogorov scale. We report the first

quantitative evidence, supported by an unprecedented statistics, of the deviations of relative dispersion

from Richardson’s picture. Deviations are due to extreme events of pairs separating much faster than

average, and of pairs remaining close for long time. The two classes of events are the fingerprints of

complete different physics, the former dominated by inertial subrange and large-scale fluctuations, and the

latter by dissipation subrange. A comparison of the relative separation in surrogate white-in-time velocity

field, with correct viscous-, inertial-, and integral-scale properties, allows us to assess the importance of

temporal correlations along tracer trajectories.
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The relative separation of pairs of fluid particles by turbu-
lence was first addressed by Richardson [1–3]. The main
question is simple and fundamental: given a pair of particles
released at time t0 and at a small separation r0 (smaller of the
Kolmogorov dissipative scale, �), what is the probability to
find them at a distance r at a later time t? In the case of
isotropic and homogeneous turbulence (HIT), the probability
density function (PDF) Pðr; tjr0; t0Þ of pair separation
depends on the amplitude of r only. Moreover, asymptoti-
cally it should become independent of the initial condition.
The knowledge of Pðr; tÞ is of utmost importance for many
studies, and it constitutes a highly nontrivial statistical prob-
lem. It is intrinsically nonstationary as it connects velocities
at particle positions, along their whole past history [4].
Richardson proposed to model particle separation in the
inertial range � � r � L0 as a diffusive process with an
effective turbulent diffusivity, estimated empirically to fol-

low a 4=3 law:DRicðrÞ ¼ dhr2i
dt � �r4=3. Here L0 is the large

scale of theflowand� ¼ k0�
1=3, wherek0 is a dimensionless

constant and � the turbulent kinetic energy dissipation. It is
easy to connect Richardson’s work with Kolmogorov’s 1941
theory by means of the dimensional estimate [4,5],

DRicðrÞ � �ðrÞhð�rvÞ2i; (1)

where �ðrÞ � ��1=3r2=3 is the eddy turnover time at scale r

and hð�rvÞ2i ¼ C0�
2=3r2=3 is the second-order Eulerian lon-

gitudinal structure function. The resulting long-time growth
of the mean squared separation is

hr2ðtÞi ¼ g�t3; (2)

where g is the Richardson constant uniquely determined in
terms of k0 [6–9]. Many studies [8,10–13] have focused on
the subject, including extensions to the case of particles
with inertia [14,15]. Richardson’s picture definitely cap-
tures some important features of turbulent dispersion, e.g.,
concerning events with a typical separation of the order of
the mean. However, fundamental questions exist on the
possibility to correctly predict extremal events, i.e., pairs

with separation much larger or smaller than hr2ðtÞi1=2.
Richardson’s approach can be rephrased as the evolution
of tracers in a stochastic Gaussian, homogeneous, incom-
pressible, and isotropic velocity field,�-correlated in time,
with a two-point longitudinal correlation DkðrÞ [16].

Under this assumption, the evolution of Pðr; tÞ is closed
and local [4,16],

@tPðr; tÞ ¼ r�2@rr
2DkðrÞ@rPðr; tÞ: (3)

Whenever DkðrÞ ¼ D0r
�, this equation, with 0 � � < 2

and Pðr; t0Þ / �ðr� r0Þ, can be solved analytically [17],
and provides the celebrated asymptotic large-time solution
(independent of r0),

PRicðr; tÞ / r2

hr2ðtÞi3=2 exp

�
�b

�
r

hr2ðtÞi1=2
�
2��

�
: (4)

Here b is a constant, uniquely determined by D0 [17]. In
such idealized scaling scenarios, tracer pairs separate in an

explosive way, forgetting their initial separation hr2ðtÞi /
t2=ð2��Þ, which reproduces Richardson’s expression for
� ¼ 4=3.
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When the turbulent flow is differentiable, i.e., � ¼ 2,
the PDF takes the log-normal form Pðr; tjr0; 0Þ /
expf�½logðr=r0Þ � �t�2=ð2�tÞg, where � is the first
Lyapunov exponent and � is connected to fluctuations of
the strain matrix [4]. In the latter case, particles separate
exponentially and the memory of the initial separation r0
remains at all times. The rate of separation stronglyfluctuates
from point to point and from time to time, being connected to
the fluctuations of the Lyapunov exponents [4,18].

Particle behavior in real flows can deviate from
Richardson’s picture due to several reasons: (i) temporal
correlations of the underlying velocity fluid [5,16,19],
(ii) non-Gaussian velocity fluctuations, (iii) ultraviolet (UV)
effects induced by the dissipation subrange, and (iv) infrared
(IR) effects induced by a large-scale cutoff. These last two are
connected with finite Reynolds effects [20].

The goal of this Letter is twofold. First, we want to
understand and quantify the rate of occurrence of rare ex-
treme events, i.e., the events of pairs that separate much

more or much less than hr2ðtÞi1=2. Second, we aim to assess
the importance of temporal correlations for both pair statis-
tics in general, and extreme events in particular. We per-
formed a series of direct numerical simulations (DNS) of
HIT seeding the fluid with bunches of tracers, emitted in
different locations, to reduce spatial correlations. Each
bunch is emitted within a small region of size ��, in puffs
of 2� 103 tracer particles each. In a single run, there are
256 of such sources, emitting about 200 puffs, with a
frequency comparable with the inverse of the Kolmogorov
time. We performed ten different runs, following a total of
4� 1011 pairs, reaching an unprecedented statistics. In
Fig. 1, we illustrate the complexity of the problem. We first
notice the abrupt transition in particle dispersion occurring
at about �10�� after the emission, when most of the pairs

reach a relative distance of the order of �10�, and the

beginning of an explosive separation in the manner of
Richardson is observed. At a later stage, there are many
pairs with relative separation of the order of the box size
�1000�, even though the mean separation is much smaller
at those time lags. On the contrary, in the inset of Fig. 1 we
show an example of a bunch with an anomalous history due
to tracers that travel close—at mutual distance of the order
of �—for very long times. This happens when pairs are
injected in a space location where the underlying fluid has a
small local stretching rate.
To quantify this phenomenology, we show in Fig. 2 the

right and left tails of Pðr; tÞ at different time lags. The top
panel shows that the fastest events have an exponential-like
tail. A cutoff separation, rcðtÞ is identified when a sharp
change in the slope is observed. The scale rcðtÞ is con-
nected to pairs that are able to separate ‘‘very fast.’’ It
indicates the existence of pairs experiencing a persistently
high relative velocity limited in amplitude by the root mean
squared single point value, vrms [21]. To support this state-
ment, we show in the inset the evolution of rcðtÞwhich is in
good agreement with the linear behavior obtained using

FIG. 1 (color). Typical time history up to t ¼ 75�� of a bunch
emitted from a source of size ��. Inset: Time history for the
same duration of a bunch emitted in a different location, and
which does not separate. DNS are performed on a cubic fully
periodic grid at 10243 collocation points with a pseudospectral
code, at a Reynolds-Taylor number Re� � 300. For further
details on the numerics; see Ref. [8].

FIG. 2. Top: log-lin plot of Pðr; tÞ at different times after the
emission. For selected values of r, we show error bars, estimated
from the statistical spread of different runs. Inset: evolution
of the cutoff scale rcðtÞ; the continuous line represents the
ballistic motion / vrmst. Bottom: log-log plot of Pðr; tÞ for t ¼
ð10; 20; 30; 40; 50; 60; 70; 90; 120Þ��. The black squares indicate

the peaks observed for small separations.
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vrms as the traveling speed. Events beyond rcðtÞ are rare,
and can be detected with high statistics only.

The opposite limit of ‘‘very slow’’ events is also remark-
able (see Fig. 2). Here, we observe a bimodal shape for
Pðr; tÞ at almost all times: the left tail of the pairs with
mutual distance r < � remains populated for a period of
time up to �60–70��, which is of the order of the large-

scale eddy turnover time TL. The pairs emitted in regions
with a small stretching rate tend to stay together. We could
empirically find that this tail can be well fitted by a
log-normal distribution (not shown), as for the case of a
spatially smooth flow, shortly correlated in time. Such
strong persistence at subdiffusive scales cannot be brought
back to small-scale clustering effects as those observed in
the dynamics of inertial particles [22]. It must be strongly
sensitive to the intermittent nature of the turbulent stretch-
ing rate with higher than Gaussian probability to have
small and large events.

In Fig. 3, we plot the same data of Fig. 2 but rescaled in

terms of the variable rnðtÞ ¼ r=hr2ðtÞi1=2, and compared
against the asymptotic prediction Eq. (4). Here, the devia-
tions fromPRicðr; tÞ at large scales for all times are evident.A
more stringent test is obtained by showing these same PDFs,
but restricted to the scales in the inertial subrange 30�< r <
300� (inset). Clearly, Eq. (4) is not satisfied. Previous studies

could access events only up to r=hr2ðtÞi1=2 < 3 (seeRef. [3]).
Our study improves by 5 orders of magnitudes (in probabil-
ity) the intensities of detectable events, thus allowing us to
highlight strong deviations from Richardson’s shape. Large
discrepancies can bemeasured also on the left tails ofPðr; tÞ,
associated to very slow separating pairs (see also below).

Such departures from the ideal self-similar Richardson
distribution needs to be better quantified, either in terms of
finite Reynolds effects (breakup of self-similarity of the

turbulent eddy diffusivity) or in terms of the neglected
temporal correlations, or both.
To assess the importance of the former, we have inte-

grated Eq. (3) using an effective eddy diffusivity DeffðrÞ,
which improves Eq. (1) by including viscous and large-
scale behaviors,

Deff
k ðrÞ � r2 r � �

Deff
k ðrÞ � r4=3 � � r � L0

Deff
k ðrÞ � const r � L0

: (5)

A widely used fitting formula that reproduces well the
Eulerian data, and that matches the expected UV and
IR scaling for both �ðrÞ and hð�rvÞ2i, is obtained by the
following equation [23]:

hð�rvÞ2i ¼ c0
r2

½ðr=�Þ2 þ c1�2=3
�
1þ c2

�
r

L0

�
2
��1=3

(6)

supplemented with a similar expression for the eddy turn-

over time, �ðrÞ ¼ ��
½ðr=�Þ2þc1��1=3 ½1þ d2ðr=L0Þ2��1=3. The

dimensionless parameters c0, c1, c2 are extracted from
the Eulerian statistics, while the parameter d2 is fixed
such as to correctly reproduce the evolution of the mean
square separation hr2ðtÞi over a time range �� � t � TL

(see Fig. 4). Despite the excellent agreement for hr2ðtÞi
shown in Fig. 4, the solution to the diffusive equation (3)
using DeffðrÞ does not match the data in the far tails as
shown in Fig. 5. Self-similarity is broken by the introduc-
tion of UVand IR cutoffs in Eq. (5), and therefore Peffðr; tÞ
no longer rescales at different times as observed in real
turbulent flows. For large times, the agreement with the
DNS data is qualitatively better, but still quantitatively off,
particularly when focusing on the sharp change at rcðtÞ
which is still absent in the evolution given by Eq. (5). This
is a key point, showing that to reproduce the observed drop

FIG. 3. Log-lin plot of Pðrn; tÞ versus the rescaled variable rn
(see text) for t ¼ ð20; 30; 40; 60; 90; 120Þ��. The distribution

Pðrn; tÞ has been divided by a factor r2n to highlight the large
separation range. The Richardson prediction, Eq. (4), becomes
time independent if rescaled in this way (solid curve). Inset:
PDFs plotted only for separations rn that, at time lag t 2
½10:120���, belong to the inertial subrange.

FIG. 4. Log-log plot of hr2ðtÞi from DNS data, and from the
diffusive evolution with eddy diffusivity (5). Inset: time evolu-
tion of the relative probability to observe a large excursion,
I>ð�; tÞ (right y scale), or small excursion I<ð�; tÞ (left y scale)
for � ¼ 3.
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at rcðtÞ, it is not enough to impose a saturation of Deff
k , for

large r. The behavior of pair dispersion must then be either
dependent on the nature of temporal correlations or on the
presence of a finite propagation speed induced by the vrms

in the flow (see the inset of Fig. 2).
Concerning the small separation tail, Peffðr; tÞ presents a

slowly evolving peak for r � �, but quantitative agreement
is not satisfactory (see the inset of Fig. 5). We explain it as
the effect of assuming a Gaussian statistics, which is bla-
tantly wrong because of turbulent small-scale intermittency.

To further quantify the departure of the modified
Richardson description from the real data, we measured
the cumulative probability to have a couple at large

separation r� ¼ �hr2ðtÞi1=2 normalized with the same
quantity evaluated from Eq. (4) using Eq. (5), namely,
I>ð�; tÞ ¼

R1
r� drPðr; tÞ=

R1
r� drPeffðr; tÞ. Similarly, to

evaluate the differences for small separation events,

we use r�¼1=�hr2ðtÞi1=2 and define I<ð�; tÞ ¼R
r�
0 drPðr; tÞ=Rr�

0 drPeffðr; tÞ. The results are shown in

the inset of Fig. 4 for � ¼ 3. Concerning I<ð�; tÞ, the
evolution using Peffðr; tÞ underestimates by a factor 2, at
small time lags, the importance of the small scale trap-
ping, i.e., does not capture the strong intermittency of
the regions where we have a small stretching rate. Only
for very large times �100��, the left tail becomes

comparable with the real ones. Concerning I>ð�; tÞ, we
measure first an underestimate of large separation events
and later a strong overestimate; i.e., �-correlation does
not capture the presence of rcðtÞ.

To quantify the importance of temporal correlations, we
compare in Fig. 6 the velocity increments conditioned on
particle distance r, SLagðr; tÞ ¼ hð�rðtÞvi 	 r̂iÞjrðtÞ ¼ ri,
with its Eulerian equivalent, SEulðrÞ ¼ hj�rvi 	 r̂iji. Fast
separating pairs have a typical velocity difference higher
than the Eulerian one. Such velocity fluctuations can be
estimated as �r=t, and Lagrangian structure function

should superpose when plotted versus r=t for different t
and for large r (see Fig. 6).
We presented the first high-statistics numerical study

able to explore rare events in turbulent dispersion. Both
‘‘fast’’ and ‘‘slow’’ separations depart from the
Richardson inertial and idealized behavior. A step for-
ward is obtained by maintaining the assumption of
�-correlation and Gaussian statistics, but with an im-
proved effective eddy-diffusivity kernel that correctly
takes into account viscous- and integral-scale physics.
To progress further, one needs to relax the Gaussianity
assumption for small-scale and the �-correlation for
integral-scale separations. The former is crucial to cor-
rectly estimate small-stretching rate events that lead to
slow separations. An attempt following the latter direc-
tion has been proposed in [24] using a Langevin pro-
cess for the relative particles velocity, with different
correlation times at different scales. Alternatively, a
memory kernel can be used to avoid unphysical events
with infinite speed [19], otherwise present in a
�-correlated velocity field (e.g., one-dimensional
telegraph-equation models show similar maximum speed
events [21]). A change in the far separation range for
Pðr; tÞ was predicted in Ref. [16], where the turbulent
diffusivity for extreme events t � r=�rv was replaced

with its ‘‘ballistic’’ estimate hð�rvÞ2i1=2t. In such cases,
the far tail should follow a stretched exponential with a

r4=3 shape.
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FIG. 5. Lin-log plot of Peffðr; tÞ as obtained from the integra-
tion of Eq. (4) with DeffðrÞ (dashed) and the DNS data
(solid line). Inset: log-log plot to highlight the slowest events
(left tail).

FIG. 6. Comparison between conditional Lagrangian (thin
lines) and Eulerian (thick line) velocity increment moment.
Inset: Lagrangian quantities plotted versus ðr=�Þ=ðt=��Þ.

PRL 109, 144501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

5 OCTOBER 2012

144501-4



[1] L. F. Richardson, Proc. R. Soc. A 110, 709 (1926).
[2] R. Benzi, in A Voyage through Turbulence, edited by P.

Davison, Y. Kaneda, K. Moffatt, and K. Sreenivasan
(Cambridge University Press, Cambridge, England, 2011).

[3] J. P. L. C. Salazar and L. R. Collins, Annu. Rev. Fluid
Mech. 41, 405 (2009).
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