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Discretized fluid solvers coupled to a Newtonian dynamics method are a popular tool to study
suspension flow. As any simulation technique with finite resolution, the lattice Boltzmann method,
when coupled to discrete particles using the momentum exchange method, resolves the diverging
lubrication interactions between surfaces near contact only insufficiently. For spheres, it is common
practice to account for surface-normal lubrication forces by means of an explicit correction term.
A method that additionally covers all further singular interactions for spheres is present in the
literature as well as a link-based approach that allows for more general shapes but does not capture
non-normal interactions correctly. In this paper, lattice-independent lubrication corrections for
aspherical particles are outlined, taking into account all leading divergent interaction terms. An
efficient implementation for arbitrary spheroids is presented and compared to purely normal and
link-based models. Good consistency with Stokesian dynamics simulations of spheres is found. The
non-normal interactions affect the viscosity of suspensions of spheres at volume fractions Φ ≥ 0.3
but already at Φ ≥ 0.2 for spheroids. Regarding shear-induced diffusion of spheres, a distinct effect
is found at 0.1 ≤ Φ ≤ 0.5 and even increasing the resolution of the radius to 8 lattice units is no
substitute for an accurate modeling of non-normal interactions.

PACS numbers: 47.11.-j, 47.57.E-, 47.15.-x, 47.11.Qr

I. INTRODUCTION

The dynamics of particles suspended in a fluid plays an
important role for a large set of problems ranging from
sedimentation and fluidization processes in industrial-
scale chemical reactors to capillary blood flow in hu-
man microcirculation. Especially the shear-induced mass
transport in suspensions of non-spherical particles, such
as blood cells, has grown to a very active field of re-
search recently [1–6]. All these examples have in common
that the gap between the surfaces of either two parti-
cles or between one particle and the geometry confining
the flow frequently becomes small as compared to the
particle size. The consequence are hydrodynamic short-
range interactions mediated by the interstitial fluid that
increase in strength as the distance of the surfaces de-
creases and that can play an important role in suspension
rheology [7] but also in the dynamics of the suspended
particles themselves [8]. The smallness of the gap be-
tween the surfaces allows for the assumption of Stokes
flow. Thus, the forces and torques on the surfaces appear
as linear functions of their translation and rotation veloc-
ities which is most conveniently formulated in terms of a
resistance matrix. Furthermore, the smallness of the gap
allows a lubrication-theoretical treatment of the interac-
tions. While the lubrication limit is treated already by
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Goldman et al. [9] in the case of a sphere next to a plane
wall, the work by Cox [10] is the first to consider arbitrary
yet smooth and convex surfaces. Approximating the sur-
faces at their points of closest approach as polynomials
of second order, Cox [10] studies the divergence behavior
of the resistance matrix for vanishing gap widths h and
presents explicit expressions for the leading-order terms
of most of the matrix elements. It is found that while
the surface-normal force induced by a relative transla-
tion of the surfaces along the same direction diverges
as h−1, all other interactions show a weaker divergence
proportional to lnh or even remain finite. Claeys and
Brady [11] complete the study by Cox [10], taking into
account the third- and fourth-order expansion coefficients
of the local surface geometry which are required to com-
pute all diverging terms for all matrix elements. The re-
sults are employed later for the Stokesian dynamics sim-
ulation of suspensions of prolate spheroids by the same
authors [12]. A computationally more efficient model for
oblate spheroids that neglects long-range hydrodynamic
interactions and for the computation of lubrication inter-
actions locally approximates the interacting surfaces as
spheres is proposed by Bertevas et al. [13].

Stokesian dynamics simulations are restricted to the
creeping flow regime. To model suspension flow at
finite Reynolds numbers, the lattice Boltzmann (LB)
method [14], especially when used in connection with the
momentum exchange method originating from Ladd [15,
16], has emerged as an increasingly popular technique
during the last two decades that further allows for a com-
parably easy parallel implementation and for complex
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boundary conditions [17, 18]. Since the method describes
the fluid only at discrete nodes of a lattice with finite
spatial resolution it cannot account for lubrication inter-
actions at arbitrarily small particle separations directly.
Already resolving them at separations of ∼ 10% of the
particle radius would require lattice resolutions that are
finer and computationally more expensive than the ones
necessary to obtain accurate drag coefficients and par-
ticle interactions at larger separations [16, 17, 19, 20].
Similar problems arise also in other simulation methods
with finite resolution, such as finite element methods [21],
stochastic rotation dynamics [22], or dissipative parti-
cle dynamics [23]. In the case of spherical particles it
is common practice to address these issues by correct-
ing the LB method for particles near contact with the
asymptotic expressions known from lubrication theory.
While many implementations correct only for normal lu-
brication forces resulting from a central approach of the
spheres [24–26], Nguyen and Ladd [27] account for the
leading divergence terms of the weaker non-normal inter-
actions as well. To the best of the authors’ knowledge, a
comparably accurate method for aspherical particles does
not exist up to now. In fact, present applications of the
LB and momentum exchange method to suspensions of
aspherical particles often do not account for lubrication
interactions explicitly [28], ignore the torque resulting
from asymmetric encounters [29], or defer the description
of short-range interactions to an empirical model [30]. On
the other hand, Ding and Aidun [31] introduce a method
for lubrication correction that is based on the intercon-
necting lattice links between particles near contact and
thus is directly applicable to aspherical particles. The
method is employed later in simulations of deformable
particles [32]. More recently, however, drawbacks of the
link-based approach are stated to be the demand for a rel-
atively large minimum lattice resolution [18] and the mis-
estimation of non-normal lubrication interactions [33].

It therefore appears that the present literature shows
some uncertainty regarding the degree of accuracy actu-
ally required from lubrication corrections in LB simula-
tions as well as regarding how to implement a sufficiently
accurate lubrication model for aspherical particles. The
goal of this work is to mitigate these uncertainties. In
section II below the LB method and the momentum ex-
change method are briefly introduced, followed by an out-
line of contact-based lubrication corrections for spheres
and of a link-based lubrication model. In section III
the implementation of accurate lubrication corrections
for aspherical particles following the analytical work by
Cox [10] and by Claeys and Brady [11] is demonstrated
for the case of spheroids. Section IV compares the dif-
ferent lubrication models with respect to the accuracy of
two-particle interactions and with respect to the shear-
induced diffusion and the viscosity of a suspension as
examples for one observable that examines the dynamics
of single particles and one averaged observable, all with
the focus on the effect of non-normal lubrication correc-
tions. Conclusions are drawn in section V. The appendix

provides a compilation of the diverging terms in the resis-
tance matrix that are given already by Cox [10] and the
remaining leading terms first computed by Claeys and
Brady [11].

II. LATTICE BOLTZMANN METHOD FOR

SUSPENSIONS OF SOLID PARTICLES

Historically, the LB method originates from lattice
gas cellular automata. A comprehensive introduction is
available in the book by Succi [14]. Time t is discretized
in steps δt = 1, space in positions x on a regular lattice
defined by a finite set of q discrete velocity vectors cr with
r = 1, . . . , q. Fluid particles at position x and time t trav-
eling along cr are represented by the discretized single-
particle distribution function nr(x, t). The algorithm to
propagate nr(x, t) in time prescribes the repeated con-
secutive execution of the advection step

nr(x+ cr, t+ δt) = n∗
r(x, t) (1)

and the collision step

n∗
r(x, t) = nr(x, t)− Ω , (2)

the latter producing the post-collision distribution
n∗
r(x, t). Eq. 2 and Eq. 1 together form the LB equation.

For the sake of simplicity, the Bhatnagar-Gross-Krook
collision term

Ω =
nr(x, t)− neq

r (ρ(x, t),u(x, t))

τ
(3)

with a single-relaxation time τ is employed. It relies on a
second-order expansion of the Maxwell-Boltzmann equi-
librium distribution

neq
r (ρ,u) = ραcr

[

1 +
cru

c2s
+

(cru)
2

2c4s
− u2

2c2s

]

(4)

with a speed of sound cs. The local density

ρ(x, t) =
∑

r

nr(x, t) (5)

and velocity

u(x, t) =

∑

r nr(x, t)cr
ρ(x, t)

(6)

are calculated as moments of the fluid distribution. In
the following, the three-dimensional D3Q19 lattice [34] is
applied for which q = 19 and the lattice weights

αcr =







1/3 for cr = 0
1/18 for cr = 1

1/36 for cr =
√
2

. (7)

In a Chapman-Enskog expansion it can be shown that
u(x, t) as obtained from the method follows the incom-
pressible Navier-Stokes equations with a kinematic vis-
cosity ν =

(

τ − 1
2

)

c2s in the limit of small Mach numbers

Ma = u/cs with cs = 1/
√
3 [34].
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In the momentum exchange method [17], particle vol-
umes of in principle arbitrary shape are discretized on the
lattice as outlined in Fig. 1(a) and coupled to the fluid
via the links crossing the resulting particle-fluid inter-
face. While the original work [15, 16] treats particles as
fluid-filled shells, the inner fluid is removed in later imple-
mentations [27, 35] including the one described here. A
no-slip boundary moving with velocity vb is established
by a mid-link bounce-back rule

nr(x + cr, t+ δt) = n∗
r̄(x+ cr , t) + C (8)

with a first-order velocity correction [15]

C =
2αcr

c2s
ρ(x+ cr, t) crvb (9)

that replaces Eq. 1 where required to prevent advection
out of a particle site x. The index r̄ is defined by cr̄ ≡
−cr. Eq. 8 with Eq. 9 is easily shown to be consistent
with Eq. 4. The reduction of fluid momentum by each
bounce-back process

dp = (2nr̄ + C) cr̄ , (10)

is transferred to the respective particle. According to
the choice of unit time steps it is equal to the resulting
force. Eq. 10 can be seen as a discretized traction vector
and is therefore used to compute the hydrodynamic force
and torque on the particle. When, due to particle mo-
tion, new fluid sites are covered, the fluid at those sites
is deleted. When a site formerly occupied by a particle
is freed, new fluid is created according to Eq. 4 with an
average fluid density ρ and u estimated according to the
rigid-body motion of the particle. Momentum conserva-
tion is ensured instantaneously by an appropriate force
on the particle. The data published by Ladd [16] for an
input radius R = 4.5 defining the discretization on the
lattice suggests that the effective hydrodynamic radius
R∗ defined via the drag coefficient deviates least from
R for a relaxation time somewhat below τ = 1. In the
following, τ = 1 is chosen and no effort is made to re-
calibrate particle radii using R∗. For spherical particles
both the relative deviations of the translational drag co-
efficient from the expected value and its fluctuations due
to the aforementioned discretization changes are found
to be below 10% already at a resolution of the sphere
radius of only R = 2.5 lattice sites [16, 36].

Problems arise when particle surfaces approach closely.
The short-range interactions are truthfully described
down to a gap width of only about 1 lattice spacing [16].
At shorter distances, the expected divergence is not re-
produced, instead the friction coefficients stay approxi-
mately constant to the value achieved at a distance of
1 [16]. The observation can be understood as depicted in
Fig. 1(a): a gap width between both surfaces of about 1
lattice spacing is the distance below which direct links be-
tween both particles emerge. Further approach does not
lead to changes in the fluid site configuration in the gap
which could cause an increase in the interaction forces.

(a) (b)

FIG. 1. (a) The discretized representation on the lattice leads
to unresolved short-range hydrodynamic interactions between
particles near contact. In the link-wise approach by Ding and
Aidun [31], correction forces are computed for single links
and for pairs of identical links connecting the particles as vi-
sualized in (b). For clarity, not all interconnecting links are
drawn.

Ladd addresses the issue later [17, 24] by employing the
dominating divergence term ∼ h−1 of the normal force
induced by the central approach of two spheres at a gap
distance h = rij − 2R as a correction

fij = −fji = −3πµR2

2
r̂ij r̂ij · (vi − vj)

[

1

h
− 1

∆c

]

(11)

to the hydrodynamic force on sphere i due to another
sphere j for which h < ∆c. The center displacement is
rij = ri − rj , the related unit vector r̂ij = rij/rij , vi

and vj denote the particles’ translational velocities, and
µ = ρν refers to the dynamic viscosity of the suspending
medium. As a cut-off parameter, ∆c represents the sep-
aration below which the LB method alone does not suf-
ficiently cover hydrodynamic interactions anymore. ∆c

is a function of τ [27]. For τ = 1, a value ∆c = 2/3 is
suggested [17, 27]. Corrections equivalent to Eq. 11 for
spheres of possibly differing radii are introduced also for
the forces and torques resulting from rotation and non-
normal translation by Nguyen and Ladd [27]. These,
however, diverge only as lnh and require separate cut-off
parameters [27].

An implicit integration scheme for the particle trajec-
tories is one way to maintain numerical stability in the
presence of clusters of particles with strong lubrication
interactions [17, 27]. In the implementation employed
here, the time step for the particle update is decoupled
from the LB time step instead which allows its reduction,
to typically 1/10: while the forces due to the momentum
exchanged with the LB fluid via Eq. 10 remain constant
over one LB step, the particle positions and velocities are
updated in accordance with the strongly varying explicit
lubrication forces at a finer temporal resolution.

Ding and Aidun [31] propose an alternative method
for lubrication corrections that is based on the intercon-
necting lattice links between particles and therefore does



4

not require analytical knowledge of the particles’ asymp-
totic resistance functions [18]. In this method, a partial
lubrication force

dfij = −dfji = − 3q̄µ

2c2rλ
∗
ĉrĉr ·(vbi−vbj)

[

1

h∗2
− 1

c2r

]

(12)

with ĉr = cr/cr is applied locally to particle i for all links
cr that end on a site belonging to i and stem from either
a site of particle j or a fluid site at the center of two links
2cr originating from j. Both possibilities are outlined in
Fig. 1(b). The gap distance h∗ is the distance between
the intersections of both theoretical particle surfaces with
the lattice link or the pair of links and therefore is typi-
cally larger than the actual minimum gap. The correction
is applied only where h∗ < cr. The velocities vbi and vbj

at the intersection points are computed from the parti-
cles’ rigid body motion. Different from Eq. 11, the model
can produce non-central forces depending on the link di-
rection cr. The curvature λ∗ is obtained as the mean of
both surfaces and q̄ = 0.6 is an empiric weighting fac-
tor [31]. Despite its generality, the model is applied and
validated initially only in the case of normal approach of
spheres and cylinders towards each other and towards a
flat wall [31]. For centrally approaching spheres, analyt-
ical consistency with the known asymptotic behavior is
demonstrated [31].

Eq. 12 is applied to deformable particles later [32] but
Clausen [33] notes an erroneous divergence of tangential
interactions as h−1 which he fixes, along with further
modifications, by the introduction of an average normal
direction navg of the surfaces. Both the difference of the
boundary velocities and the link-wise gap are projected
along navg and the resulting force is applied in the same
direction. Thereby, however, locally tangential lubrica-
tion corrections are removed. Moreover, the discretiza-
tion of lubrication interactions onto interconnecting lat-
tice links that appear and vanish as particles move is
found to cause instabilities [33] that apparently prevent
usage of the link-wise model in at least some of the sub-
sequent work [2].

III. CONTACT-BASED LUBRICATION

CORRECTIONS FOR SPHEROIDS

Though many of the following ideas could be applied
to particles of other convex shapes as well, spheroids with
half axes R‖ and R⊥ parallel and perpendicular to their
axis of rotational symmetry will be treated here. A con-
venient parametrization of the surface is

ỹ(p, q) =





R⊥ cos p cos q
R⊥ cos p sin q

R‖ sin p



 , (13)

where the tilde indicates a representation in the body-
fixed reference frame where the origin is at the center of
the particle and the ỹ3-direction oriented along its axis of

rotational symmetry. For symmetry reasons, the direc-
tions of principal curvature are the tangential directions

s̃1(p, q) = ∂pỹ(p, q) and s̃2(p, q) = ∂qỹ(p, q) . (14)

The respective radii of curvature

S1(p) =
s1(p)

3

R‖R⊥
and S2(p) =

R⊥s1(p)

R‖
, (15)

with

s1(p) = |s̃1(p)| =
√

R2
⊥ sin2 p+R2

‖ cos
2 p (16)

can be obtained from a second-order expansion of Eq. 13.

A. Minimum gap between two spheroids

The strong dependence of lubrication interactions on
the minimum separation between two particles i and j re-
quires precise knowledge of the magnitude and direction
of the minimum gap vector h. For two spheres with radii
Ri and Rj , the result trivially is h = −(rij −Ri−Rj)r̂ij ,
where the minus sign ensures a direction away from par-
ticle i. Already for spheroids the problem in general is
considerably more intricate. One solution is to follow the
iterative procedure presented by Lin and Han [37] for the
distance between two ellipsoids. As illustrated in Fig. 2,
the method involves the re-positioning of tangent spheres
along the inner surface of each ellipsoid to minimize the
distance of the sphere centers and thus the gap between
the ellipsoids. A sufficient requirement for convergence
of the method is that each sphere is completely contained
in the respective ellipsoid [37]. This is achieved easily if
the radius is chosen as the minimum radius of curvature

S̄ =







R2
‖/R⊥ for R‖ < R⊥

R for R‖ = R⊥ = R
R2

⊥/R‖ for R‖ > R⊥

. (17)

Initially, the spheres are placed tangent in the intersec-
tion points of the spheroid surfaces with the line con-
necting the spheroid centers. In the iteration, the tan-
gent points yi and yj are repeatedly updated to become
the intersections of the spheroid surfaces with the line
connecting the current centers zi and zj of the spheres.
The iteration stops once the angles θi and θj between
the outward pointing surface unit normals n̂i in yi and
n̂j in yj and the vector zij = zi − zj between the sphere
centers approximate zero. The converged surface posi-
tions of minimum distance are referred to as y∗

i and y∗
j

in the following. Practically, the convergence criterion is
implemented as the requirement that both

cos θi = −n̂i · ẑij > 1− ǫ , (18)

with ẑij = zij/zij and Eq. 18 with indices i and j
swapped hold. Due to the small magnitude of ∂ cos θi/∂θi
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near θi = 0, a rather low value of ǫ = 10−6 is cho-
sen to ensure accuracy. The resulting gap vector is
h = −(zij − 2S̄)ẑij .

For overlapping particles, Lin and Han [37] effectively
state that h = 0 and abstain from a further treat-
ment. When implemented accordingly, their method as
described above is, however, stable also for configurations
were particles overlap to an amount small as compared
to their radii of curvature. Then, h still points from the
bulk of particle i to j but the scalar gap zij − 2S̄ is nega-
tive. This is an important feature that could be used to
model elastic contact forces but also to enhance the sta-
bility of dense simulations of infinitely stiff particles with
a finite time step where minimal amounts of overlap are
surely undesired but sometimes inevitable.

Eq. 17 ensures that the tangent spheres assumed in
the algorithm lie within the respective spheroids which
is noted to be sufficient for convergence but not neces-
sarily optimal with respect to the number of iterations
required [37]. In many cases typical for the spheroids sim-
ulated here, convergence can indeed be speeded up dra-
matically by adjusting S̄ for each surface to the smaller of
the two local principal radii of curvature in Eq. 15. Thus,
a two-fold strategy is being followed: first, up to N1 iter-
ations with S̄ = min{S1(p), S2(p)} are performed. Since
due to the potentially enlarged S̄ and the allowance for
overlap a meaningful result is not guaranteed, two con-
sistency checks are performed whenever Eq. 18 indicates
convergence: it is required that n̂j ·rij > 0 and n̂i ·rij < 0
so the outward-directed surface normals point towards
the center of the other particle. In case of overlap, y∗

i

has to be contained within particle j and vice versa. If
at least one of the conditions fails or convergence is not
achieved yet, the algorithm restarts with the more con-
servative S̄ from Eq. 17 for a maximum of N2 iterations.
Here, N1 = 10 and N2 = 1000 is chosen as a set of values
that for particles with aspect ratio Λ = R‖/R⊥ = 1/3
results in an average total number of iterations per gap
computation of almost 40. This is a reduction of about
30% as compared to only one iteration with fixed radii
defined by Eq. 17. So far, no configuration without sig-
nificant overlap is known where the combined procedure
with these parameters fails to converge.

With a cut-off gap such as ∆c in Eq. 11, it is nec-
essary to determine h once during every (particle-)time
step for every pair of particles with a minimum sepa-
ration that is potentially smaller than ∆c. All pairs
with a center distance rij > 2max{R‖, R⊥} + ∆c can
clearly be excluded. A computation is unnecessary also
if rij > max{R‖, R⊥} + ∆c ≡ Rc but at the same time
particle i has no intersection with a plane normal to rij in
a distance of Rc away from rj in the direction of i or vice
versa. This can be tested in a comparably inexpensive
way and avoids unneeded computations of h, especially
in the case of highly aspherical particles. A further very
effective approach for optimization consists in starting
the iteration to obtain h not from the particle centers
as explained above but using the converged tangent po-

yi
(new)

yj
(new)

yi

yj

zj

zi

FIG. 2. Two-dimensional outline of the iterative approach de-
scribed by Lin and Han [37] to find the minimum gap between
the surfaces of two ellipsoids. (idea for figure from Ref. [37])

sitions y∗
i and y∗

j of the previous computation instead.
Since particle configurations do not change much during
one time step this often enables convergence within only
one iteration and results in a further reduction of the
average total number of iterations per gap computation
from almost 40 to less than 1.01 for Λ = 1/3. The same
result is found in typical simulations of particles with
other aspect ratios 1/4 ≤ Λ ≤ 4.

B. Diverging lubrication interactions

Cox [10] and later Claeys and Brady [11] expand the
surfaces of two particles i and j near contact around their
closest points y∗

i and y∗
j as

x3 = − x2
1

2S1
− x2

2

2S2
−

3
∑

k=0

Γkx
3−k
1 xk

2 +O(r4) (19)

and

x′
3 =

x′2
1

2S′
1

+
x′2
2

2S′
2

+

3
∑

k=0

Γ′
kx

′3−k
1 x′k

2 +O(r′4) (20)

in the tangential coordinates x1 and x2 that are mea-
sured along the directions of principal curvature of the
respective particle, given in Eq. 14. Here and in the fol-
lowing, primed variables refer to the surface of particle j
and unprimed ones to the one of i. The Γ0−3 are the co-
efficients of the third-order terms in the expansion. The
error terms scale as the fourth power of the tangential
distance r =

√

x2
1 + x2

2 from the gap position. In fact,
Cox [10] in general considers only the quadratic terms in
Eq. 19 and Eq. 20 while Claeys and Brady [11] expand
up to even fourth-order. Here, only second and third or-
der are taken into account. The fourth-order coefficients
are needed only for a weakly diverging lnh contribution
to surface-normal lubrication forces [11] which at small
gaps h must be dominated by the h−1 term (see also
appendix). As is shown in Fig. 3, φ denotes the angle
between the principal directions of curvature of both sur-
faces and both x3-axes point in the direction of h while
the origins, y∗

i and y∗
j , obviously differ.

In Ref. [10] and Ref. [11], the asymptotic behavior for
small h of the force F̄ and torque T̄ on each of the surfaces
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x1
x2

x’1
x’2

x’3=x3-h

φ
y*i

y*j

FIG. 3. The coordinate axes as defined by Cox [10] and by
Claeys and Brady [11] for the approximation of the two sur-
faces at the minimum gap as bivariate cubic polynomials.
(idea for figure from Ref. [11])

i and j is analyzed in dependence of the translational and
rotational velocities V̄ and Ω̄ of both i and j. The bar on
vector quantities is used to indicate a representation in
the local surface coordinates {x1, x2, x3} associated with
particle i. Since the diverging terms depend only on the
relative velocities, the relation can be expressed as
(

F̄i

T̄i

)

= −
(

F̄j

T̄j

)

= µK

(

V̄j − V̄i

Ω̄j − Ω̄i

)

+O(h0) , (21)

with a 6×6 resistance matrix K [10, 11]. K is symmetric
and some of the elements are zero as the corresponding
forces and torques remain finite upon contact. Thus,
there are only 16 independent non-zero matrix elements
Kγδ which are functions of the gap h, the angle φ, and
the expansion coefficients in Eq. 19 and Eq. 20. These
Kγδ can be obtained from the literature [10, 11] but are
listed in the appendix for the sake of completeness. Since
a part of the lubrication interactions is already accounted
for by the LB method, only a correction for small gaps
is required. Analogously to Ladd’s initial approach in
Eq. 11 [24, 27], a corrective resistance matrix K̃ is con-
structed from the differences

K̃γδ(h) =

{

Kγδ(h)−Kγδ(∆γδ) for h < ∆γδ

0 for h ≥ ∆γδ
(22)

of the diverging resistance terms at the actual gap h
and at a cut-off distance ∆γδ. Following Nguyen and
Ladd [27], only three independent cut-offs are used,
∆33 ≡ ∆n for the coupling of normal translation and
force, ∆44 = ∆45 = ∆54 = ∆55 ≡ ∆r for the coupling
of angular velocities and torques, and ∆t for all further
resistances. Suitable values have to be found empirically
depending on τ [27].

For spheroids, the quadratic coefficients 1/(2S1(p))
and 1/(2S2(p)) are known already from Eq. 15 where

p is defined by Eq. 13 and the known surface position y∗.
The symmetry of the particles causes Γ1 = Γ3 = 0. The
remaining cubic coefficients

Γ0(p) =
(R2

‖ −R2
⊥)R‖R⊥ sin p cos p

2s61(p)
(23)

Γ2(p) =
(R2

‖ −R2
⊥)R‖ sin p cosp

2R⊥s41(p)
(24)

are the result of an expansion of Eq. 13 up to third order
in x1 and x2.

The method can be applied to more complex parti-
cle shapes provided that the minimum gap, the principal
curvatures, and the cubic coefficients can be determined.
The extension to mixtures of particles of different shape
or dimension can complicate the implementation to some
extent but is no further problem if an algorithm to find
the minimum separation exists, as the other parameters
are properties of a single particle. The most serious limi-
tations are the requirement of smooth surfaces that allow
for a third-order expansion in every point and that the
surfaces must be such that for h = 0 they would touch
in only one point [10]. This allows, for example, the
application to one sufficiently smoothly capped cylinder
interacting with a sphere but not to two such cylinders
in parallel orientation side by side. The occurrence of√
λ1λ2 in the denominator of all matrix elements Eq. A.1

to Eq. A.16 leads to divergence if at least one of the cur-
vature eigenvalues defined in the appendix is zero and re-
sembles the second limitation directly. Taking the finite
particle length for the maximum radius of curvature, as
suggested by Butler and Shaqfeh [38], might be a viable
solution to this problem. Unfortunately, the curvature of
the popular spherocylinder is still discontinuous at the
transition line between the cylinder and the hemispheri-
cal caps which might cause numerical difficulties.

Knowing the directions along which x1, x2, and x3 are
measured, the transformation of V̄i, Ω̄i, F̄i, and T̄i to
and from Vi, Ωi, Fi, and Ti in the particle-independent
coordinate system in which the integration is carried out
is straightforward to achieve. For rigid bodies the rela-
tions with the center of mass velocities vi and ωi of a
particle then read

Vi = vi + ωi × (y∗
i − ri) (25)

and Ωi = ωi (26)

and the resulting force and torque on the particle are

fi = Fi (27)

and ti = Ti + (y∗
i − ri)× Fi . (28)

C. Treatment of particle contact

In practice, the surface-normal lubrication interactions
do not suffice to prevent particle contact, especially in
dense systems. The lubrication interactions therefore are
often reported to be clipped at a specific value to avoid
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numerical instabilities [25, 32, 33, 39] and a short-range
repulsive force is added to act against unphysical cluster-
ing or even overlap of particles [13, 25, 26, 29, 32, 33, 40].
To limit the forces and torques resulting from the lubrica-
tion corrections to finite values, the gap entering Eq. 22
is not allowed to be smaller than a short-range cut-off
hc independently from the actual gap h. For h < hc a
Hookean repulsive force

Fr(h) = ǫc

{

(hc − h) for 0 < h < hc

hc for h ≤ 0
(29)

with a stiffness ǫc is applied along the x3-direction which
itself is limited to the magnitude achieved at h = 0.
Effectively, this implementation of a short-range repul-
sion is identical to the one applied by Kromkamp et

al. [26] who refer to Ball and Melrose [41]. Here, it
is chosen solely because of its simplicity. Alternative
phenomenological approaches can be found in the liter-
ature [8, 25, 33, 42]. Repulsion forces founded in elastic
theory [29, 43] or even more elaborate contact descrip-
tions [44] can be employed if the objective is to capture
non-hydrodynamic interactions of particles. The com-
plete lubrication correction and contact model reads
(

F̄i

T̄i

)

=















µK̃(h)

(

V̄j − V̄i

Ω̄j − Ω̄i

)

for h > hc

µK̃(hc)

(

V̄j − V̄i

Ω̄j − Ω̄i

)

− Fr(h)Ê3 for h ≤ hc

= −
(

F̄j

T̄j

)

, (30)

with Ê3 being the unit 6-vector connected with the x3-
direction of the force F̄i.

The above treatment introduces two additional param-
eters hc and ǫc. When modeling a physical suspension, it
can be interpreted as modeling “residual Brownian forces
or particle roughness” [40] and the parameters can be
used to control the strength of non-hydrodynamic ef-
fects. When targeting the theoretical model system of
smooth particles in the absence of Brownian motion, care
must be taken to ensure that the influence of the non-
hydrodynamic contact modeling is sufficiently small to
be neglected. Then the results of a simulation do not
depend on the exact values of the parameters hc and ǫc.
Since in this view, hc and ǫc are purely numerical pa-
rameters they should not be rescaled as physical quan-
tities when a simulation is transformed from one spatial
resolution to another. Instead it appears reasonable to
keep hc constant when measured in lattice units so the
lubrication corrections are applied down to smaller rel-
ative gaps h/R at higher resolution R. From Eq. 29 it
is easily seen that the maximum repulsive force is ǫchc.
In order to prevent particle overlap it should scale as
the viscous forces, estimated as 6πµR2γ̇ for flows with
a shear rate γ̇ [13, 40]. Since in this work τ = 1 is as-
sumed, a transformation from one resolution to another

does not change the viscosities and also R2γ̇ must stay
constant as it is proportional to the particle Reynolds
number Rep = 4R2γ̇/ν. Thus ǫc should be kept constant
then as well.

Also the present implementation of a link-based lu-
brication model as in Eq. 12 employs a, then link-wise,
clipping of the lubrication force equivalent to the one in
Eq. 30 and a short-range repulsive force with a functional
dependency on the gap width identical to Eq. 29. Since
in this case the gap is measured link-wise and the force
is not applied once per particle along the surface-normal
direction but once per link along the link direction, sep-
arate values for the now link-wise parameters ǫ∗c and h∗

c

are required in general. The link-wise correction forces
further correspond to stresses, therefore ǫ∗ch

∗
c should scale

as 6πµγ̇ [33] to prevent overlap and ǫ∗c requires appropri-
ate rescaling upon changing the resolution if h∗

c is kept
constant.

IV. VALIDATION AND COMPARISON TO

OTHER MODELS

A. Pair interactions of spheres

For spheres, the lubrication corrections developed here
are equivalent to the ones of Nguyen and Ladd [27] who,
however, present detailed validation only for the inter-
action of a single sphere and a planar wall. The accu-
racy of the present method is studied for the more fre-
quent interaction of two identical spheres. This setup
is particularly suited for validation since good analyti-
cal approximations exist [45]. For their link-wise model,
Ding and Aidun [31] show only the normal force between
spheres plotted on a linear scale which makes it hard
to appreciate the actual accuracy of the method, while
the analysis of Clausen [33] is performed for a resolu-
tion of the particle radius with R = 10 lattice sites that
for non-deformable particles seems unnecessarily large.
Therefore, also a comparison with the link-wise model at
different R follows.

In all tests one particle is placed with a random off-
set with respect to the lattice near the center of a closed
cubic box which imposes a no-slip condition on the fluid
velocity. In a preliminary study, the size of the box is
chosen to be 15R as a viable compromise between com-
putational costs and the undesired enhancement of the
single-particle resistances by interaction with the wall
which decays only slowly with increasing box size. An-
other particle is placed at a random position with a pre-
scribed gap h between both surfaces. For simplicity, the
direction from the first to the second particle is referred
to as w3 and two further directions w1 and w2 are cho-
sen randomly but mutually orthogonal to form a right-
handed system. While the first particle is held fixed,
the second particle is forced to either translate with a
constant velocity v along w1 or w3 or to rotate with an
angular velocity ω about w1. The magnitude of the ve-
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locities is chosen to result in a fixed Reynolds number
Re = vR/ν = ωR2/ν = 6× 10−8 with ν = 1/6 for all R.
As was tested by increasing Re by a factor of 10, no iner-
tial effects are visible. The simulations are allowed to run
for several 103 LB steps until a steady state is reached.
The motion of the particle during this time is negligi-
ble and no changes in the discretization are observed in
general. Apart from effects of discretization and confine-
ment which are not expected to diverge for decreasing
h, symmetry arguments dictate that a translation along
w1 and w3 results in a force in the respective opposite
direction, a rotation about w1 results in a torque in the
opposite direction, and additionally, translation and ro-
tation along w1 results in a torque about w2 and a force
along −w2, respectively. For each R, the magnitude of
these forces and torques is averaged over at least 15 ran-
dom configurations with the same value of h. Since the
particle motion is prescribed, there is no need for a short-
range lubrication cut-off and repulsion, thus hc = ǫc = 0
is set. From comparison with the results by Jeffrey and
Onishi [45] suitable long-range cut-offs at τ = 1 for all R
are found to be

∆n =
2

3
, ∆t =

1

2
, and ∆r =

1

4
. (31)

The relation to the cut-offs hN , hT , and hR suggested by
Nguyen and Ladd [27] is not surprising: ∆n = hN and
∆t = hT but ∆r 6= hR because the cut-offs in Ref. [27] re-
late to the resistance functions of the spheres themselves
while the cut-offs here relate to the resistances of the sur-
faces at the gap. Thus, in the lubrication correction of
the torque experienced due to rotation about w1, both
∆t and ∆r are involved while in Ref. [27] it is only hR.

Fig. 4 displays the resistance functions related to the
particle motions explained above at resolutions R = 2,
4, and 8 resulting from the choice of lubrication cut-
offs given in Eq. 31. The striking similarity of Fig. 4(c)
and (d) can be explained by the Lorentz reciprocal theo-
rem [46]. The data in Fig. 4(b) and (c), and the data in
(d) and (e) are taken from the same simulations. Gener-
ally, an offset with respect to the solution by Jeffery and
Onishi [45] is observed which in each figure is roughly
constant for a given R. These offsets can be attributed
to two effects: the analytical solution considers two parti-
cles in an infinite volume of fluid while the simulations are
performed within a finite box. The interactions with the
walls lead to an enhancement of the single-particle resis-
tances, best seen in Fig. 4(b) for large h/R. Second, the
effective hydrodynamic radii of particles modeled by the
momentum exchange method are known to differ from
the input radii R, especially at small R, which explains
the more or less severe underestimation of all resistances
for R = 2. The comparably large statistical errors in the
data for the smallest radius must be attributed to dis-
cretization effects. All these observations could be made
for single particles as well and it is not within the scope
of lubrication corrections to alleviate the shortcomings
but only to produce a smooth increase of the resistances
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FIG. 4. (Color online) Non-dimensional resistances for one
of two identical spheres of radius R aligned along direction
w3 at a normalized gap h/R. Compared are simulations with
the contact-based lubrication model at different resolutions
of R in lattice units (symbols) with the series developed by
Jeffrey and Onishi [45] (lines). (a) shows the force along w3

due to a translation with velocity v in the opposite direction,
(b) the force in the perpendicular direction −x1 due to a
translation along w1, (c) the torque about w2 due to the same
translation, (d) the force along −x2 due to a rotation about w1

with angular velocity ω, and (e) the resulting torque about
−x1. Error bars quantify the standard deviation obtained
from at least 15 random configurations and are drawn only
where larger than the symbol itself.

with decreasing separation parallel to the theoretical so-
lution. The lubrication model achieves this objective to
very good accuracy at R = 4 and 8 and, taking into
account the larger discretization errors, even at R = 2.

As expected from the work of Clausen [33], the link-
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FIG. 5. (Color online) Normalized resistances as in Fig. 4
obtained from simulations with link-based lubrication correc-
tions. For brevity, only the force due to a (a) normal or (b)
tangential translation is shown, the other singular resistances
appear to be qualitatively similar to case (b).
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FIG. 6. (Color online) Normalized resistances as in Fig. 5
obtained from simulations without lubrication corrections.

wise model leads to an under-prediction of the normal
force f3 as displayed in Fig. 5(a) while the divergence
of the tangential force f1 in Fig. 5(b) is clearly over-
predicted. The other non-normal singular forces and
torques t2, f2, and t1 are over-estimated in a qualitatively
similar way at small separations. A special treatment of
short-range contacts is disabled in these simulations by
setting h∗

c = ǫ∗c = 0. Since the link-based model relies on
discrete lattice links to compute lubrication corrections,
severe noise is caused by an amplification of discretiza-
tion errors at small distances. This effect is strongest for
R = 2 but visible also by the error bars obtained for the
higher resolutions in Fig. 5. Finally, Fig. 6 shows the
resistances to normal and tangential translation without

lubrication corrections. Again, the other non-normal re-
sistances appear to be qualitatively similar to Fig. 6(b).
It is clear that, without lubrication modeling, the sin-
gular behavior is captured only partially depending on
the lattice resolution. In the case of R = 2, an increase
is hardly visible for gaps h/R < 1. In Clausen’s modi-
fied link-based model [33] the under-prediction of f3 ap-
pears to be reduced while all non-normal resistances re-
main uncorrected. At best, this model can perform as
the theoretical solution for f3, which is, as can be seen
in Fig. 4(a), closely approximated by the contact-based
method, and comparable to Fig. 6(b) for all other terms.
The importance of non-normal interactions in dynamic
simulations of many particles remains to be examined
below.

B. Pair interactions of spheroids

To validate the lubrication corrections in the case
of spheroidal particles, an equivalent procedure as for
spheres is followed. The long-range cut-offs in Eq. 31
found suitable for spheres are kept. Different from the
case of spheres, the validation is performed not focusing
on the particles as a whole but on the surfaces around the
points of closest approach y∗

i and y∗
j on both spheroids.

Thus, the coordinate system {x1, x2, x3} is chosen as de-
fined in Eq. 19 according to the local directions of prin-
cipal curvature and the local normal direction of the first
particle. While the second particle is held fixed, the first
one is forced to translate and rotate in a way that causes
its surface to either translate along or rotate about one of
the coordinate axes and the resulting force and the torque
with respect to y∗

i is recorded in the same frame. Com-
pared to spheres, the parameter space is considerably in-
creased as a configuration is defined not only by the sur-
face separation but also by the particle aspect ratio and
the relative orientation. The purpose here lies mainly
in demonstrating the physical correctness and the degree
of resolution independence achievable with the presented
model. For this purpose it is sufficient to exemplarily
examine one fixed particle configuration at varying dis-
tances for each diverging element of K. The 16 singular
Kγδ can be reduced to the only 10 physically different
cases that are displayed in Fig. 7: (a) tangential force
K11 (equivalent to K22), (b) perpendicular tangential
force K21, (c) normal force K31 (equivalent to K32), (d)
tangential torque K41 (equivalent to K52), and (e) per-
pendicular tangential torque K51 (equivalent to K42) due
to tangential translation; (f) normal force K33, (g) tan-
gential torque K43 (equivalent to K53), and (h) normal
torque K63 due to normal translation; and (i) tangential
torque K44 (equivalent to K55) and (j) perpendicular tan-
gential torque K54 due to tangential rotation. Fig. 7(a)
to (e) are generated from the same set of simulations.
The same is done for plots (f) and (g) and for (i) and
(j). For (h) K63 a configuration of two prolate spheroids
with aspect ratio Λ = 3 is chosen where the axes of both
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FIG. 7. (Color online) The measured resistances K
(m)
γδ for the ten independent and physically different singular types of

lubrication interactions as function of the surface separation h: (a) tangential force, (b) perpendicular tangential force, (c)
normal force, (d) tangential torque, and (e) perpendicular tangential torque due to tangential translation; (f) normal force, (g)
tangential torque, and (h) normal torque due to normal translation; and (i) tangential torque and (j) perpendicular tangential
torque due to tangential rotation. All data is obtained from the same configuration of oblate spheroids with aspect ratio
Λ = 1/3 except for (h) where prolates with Λ = 3 are used. The two configurations are visualized in the insets of figures (c)
and (h) as seen from the respective local x3-, x1-, and x2-direction of the first of the two particles (drawn red, with center at
lower coordinate position). Symbols refer to different resolutions of the smaller half-axis, lines to the respective correction term,
shifted by an arbitrary constant. Resolutions 1 to 4 feature lubrication corrections, resolution 16 does not for comparison. The
combined mean curvature λ̄ serves for non-dimensionalization.

particles are both perpendicular to the line between their
centers but twisted against each other by an angle of 10◦.
The remaining resistances are examined for a randomly
generated configuration of two oblates Λ = 1/3 that re-
sults in a clear divergence of all elements but K63 and
that is defined by the angles ∠(y∗

i − ri, ôi) = 177.06◦,
∠(y∗

j − rj , ôj) = 82.591◦, and ∠(ôi, ôj) = 40.277◦ with
the respective axes of rotational symmetry ôi and ôj of

the particles. The configurations are visualized as in-
sets of Fig. 7(c) and (h). The surface separation h but
also the resistances Kγδ are made dimensionless using
the combined mean curvature of both surfaces [11]

λ̄ =
1

4

[

1

S1
+

1

S2
+

1

S′
1

+
1

S′
2

]

. (32)
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Again the magnitude of the velocity is chosen such that
Re remains constant when changing the resolution. In
case of the lowest resolution min{R‖, R⊥} = 1 it is

v = 10−8. The size of the cubic simulation volume in
this case is 30min{R‖, R⊥} = 10max{R‖, R⊥} = 30 and
is scaled according to the particle resolution. For the data
at resolutions 1, 2, and 4, each symbol stands for the av-
erage of at least 15 independent simulations at identical
relative particle separation and orientation but a random
sub-grid offset and rotation with respect to the fluid lat-
tice. The error bars represent the standard deviations.

In the absence of theoretical results, simulations with
lubrication corrections at several resolutions are com-
pared to simulations without corrections but with a con-
siderably increased lattice resolution min{R‖, R⊥} = 16
where lubrication interactions can be expected to be cap-
tured by the LB method itself already to a large ex-
tent. For these more expensive high-resolution simula-
tions, each symbol in Fig. 7 corresponds to only 4 inde-
pendent samples. Additionally, the divergence behavior
expected from Eq. A.1 to Eq. A.16 is plotted with an
arbitrary offset. As a further confirmation for the cor-
rect implementation of the method, Newton’s third law
in Eq. 30 is not exploited to save computations but the
effects on both surfaces are computed independently and
checked for consistency. Indeed, the forces and torques
are found to be equal but opposite apart from small de-
viations attributed to the error in the anti-parallelism
of the normal directions of both surfaces according to
Eq. 18.

In Fig. 7 the resistances obtained with lubrication cor-
rections at the larger resolutions min{R‖, R⊥} = 2 and
4 appear largely parallel to each other and consistent
with data from the uncorrected simulations at resolu-
tion 16. Of course, also at this highest resolution the
lubrication interactions as resolved by the LB method
alone eventually break down at the smallest separations
and consequentially depend strongly on the discretiza-
tion of the gap. These effects are best visible in Fig. 7(h)
and (c). Still, at least for intermediate gaps, the resis-
tances obtained at resolution 16 are well compatible with
the theoretical divergence terms Kγδ. Simulations at the
lowest resolution min{R‖, R⊥} = 1 tend to suffer more
from discretization errors and in general feature a less
smooth transition from the non-singular long-range be-
havior to the short-range regime that is dominated by
the Kγδ. For the chosen particle configuration, the nor-
mal force induced by a tangential translation, displayed
in Fig. 7(c), seems to be particularly difficult to capture
properly: for large gaps the resistance seems identical at
all resolutions but in the region where lubrication interac-
tions dominate an offset is visible not only at resolution
1 but also between resolutions 2 and 4, and compared
to resolution 16 without corrections. This indicates that
in this particular case, different than assumed, the diver-
gence of K31 is not resolved by the LB method down to a
separation of approximately one lattice unit. A possible
explanation lies in the fact that K31 (given in Eq. A.3)

depends on the third order coefficients Γ0 and Γ2 of both
particles. On the second particle, y∗

j lies near the edge
(see inset of Fig. 7(c)) where according to Eq. 15 the
minimum radius of curvature for an oblate of aspect ra-
tio 1/3 is only R‖/3. Even at resolution 4, the radius is
only 4/3 and the third-order features of the surface can-
not be expected to be resolved well at this resolution. It
is not clear why equivalent difficulties do not exist for the
normal force induced by a tangential rotation depicted in
Fig. 7(g) that also depends on Γ0 and Γ2 in the same con-
figuration of particles. The error bars, also of the data
at resolution 16 without corrections, suggest that K31 in
this configuration is particularly susceptible to discretiza-
tion effects. Nevertheless, at resolution min{R‖, R⊥} = 2
the offset to higher resolution data at small gaps does
not appear exceedingly large as compared to the results
for the other resistances. In the following simulations of
spheroidal particles a length of the smaller half-axis of 2
lattice units is regarded as minimum spatial resolution.

C. Many particles in suspension: shear-induced

diffusion and viscosity

The initialization of densely-packed configurations of
many particles without overlap is not trivial already for
spherical particles. A growth method similar to the ones
described in the literature [3, 47] is applied: the particles
are initially scaled down to typically only 30% of their
linear size, so an overlap-free placement at random po-
sitions is easily achieved. The half-axes are then slowly
grown to their actual size. During the growth, the parti-
cles are free to reorient and move but lubrication and hy-
drodynamic interactions are replaced by simple damping
terms for the velocities and only the Hookean short-range
repulsion defined in Eq. 29 is acting. Growing the par-
ticles to dimensions slightly beyond their final size and
resetting the size afterwards assures a certain minimum
separation in the generated particle configuration.

As a first benchmark, the shear-induced self-diffusion
of spherical particles in the direction of a velocity gra-
dient is studied. Accurate data for supposedly purely
hydrodynamically interacting spheres in Stokes flow is re-
ported by Sierou and Brady [40]. Lees-Edwards bound-
ary conditions [48] impose a well-defined shear rate in
an otherwise periodic system with cubic dimensions to
mimic an infinite volume of fluid. Depending on the vol-
ume fraction Φ, between 800 to 4000 particles are mod-
eled, which, according to Ref. [40] should allow for suf-
ficiently reliable results. In the case of a resolution of
R = 4, the simulation comprises 1283 lattice sites. Ini-
tially, all systems are equilibrated with the shear for a
time interval of roughly 130γ̇−1. For each particle i, the
trajectory xi(t) in velocity gradient direction is recorded
during another 630γ̇−1 and the mean-square displace-
ment 〈∆x2(∆t)〉 = 〈(xi(t+∆t)−xi(t))

2〉i,t during a time
interval ∆t is computed as an average over all particles i
and starting times t.
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pensions of spheres with radius R = 4 as obtained with the
full contact-based corrections, the same with non-normal cor-
rections disabled, and the link-based approach. The mean
square displacement in velocity gradient direction at a solid
volume fraction of Φ = 0.2 is shown. Results from accelerated
Stokesian dynamics simulations by Sierou and Brady [40] are
plotted for comparison.
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FIG. 9. (Color online) Shear-induced self-diffusion as in
Fig. 8. The diffusion coefficients in velocity gradient direc-
tion computed from the mean-square displacement as shown
in Fig. 8 are displayed as a function of the volume fraction Φ.
Results from accelerated Stokesian dynamics simulations by
Sierou and Brady [40] are shown for comparison. The error
bars represent an estimated statistical error of 4% and are
drawn only where larger than the corresponding symbol.

Fig. 8 compares the mean-square particle displacement
〈∆x2〉 for Φ = 0.2 as a function of the time interval
∆t as obtained from the contact-based method presented
above, the link-wise method briefly sketched in section II,
and the contact-based method with all non-normal lubri-
cation corrections disabled with the results by Sierou and
Brady [40]. As expected, over short times ∆t the particle
velocities are self-correlated and a scaling 〈∆x2〉 ∼ ∆t2

is found. For large ∆t hydrodynamic interactions lead
to decorrelation and the relation becomes diffusive with
〈∆x2〉 ∼ ∆t. All lubrication corrections capture the
short-time behavior consistently and show diffusion at
long times. While, however, in the two contact-based
simulations, the magnitude of the diffusion is only mod-
erately under- and over-predicted as compared to the lit-
erature, the link-wise corrections lead to a considerable
over-prediction by roughly 100%. This observation is
made for the full range of volume fractions when com-
paring the resulting diffusion coefficients Dx, obtained for
large ∆t from fits 〈∆x2〉 = 2Dx∆t + const, as it is done
in Fig. 9. By repeating the simulations using four differ-
ent random starting configurations for Φ = 0.2 and 0.4,
the statistical errors are estimated to be ∆Dx = 0.0004
and 0.002, respectively, or 4% and 2% of the respective
Dx itself. In Fig. 9, a relative statistical error of 4% is
assumed for all data. In the case where the non-normal
interactions are disabled, Dx continues to grow as a func-
tion of Φ at Φ > 40% where all other datasets show
a plateau or at least a significantly reduced slope. In
general, the full contact-based corrections are most con-
sistent with literature data. The remaining discrepancy
might be caused by finite size effects or by small devia-
tions in the effective hydrodynamic particle radii. The
finite particle Reynolds number Rep = 4R2γ̇/ν = 0.24
seems sufficiently small to justify the comparison with
Stokesian dynamics simulations. In their recent publica-
tion [7], Yeo and Maxey, using the lubrication-corrected
force coupling method, find values of Dx almost identi-
cal to those in Ref. [40] even at (according to the above
definition) Rep = 0.4.

Obviously, the influence of the free short-range param-

eters h
(∗)
c and ǫ

(∗)
c on shear-induced diffusion needs to

be examined. In the present simulations, hc = 0.01 and
ǫc = 100 is chosen for the two contact-based cases and
h∗
c = 0.04 and ǫ∗c = 100 for the link-wise corrections.

Measured on the scale of viscous forces or stresses, this
corresponds to maximum repulsions of hcǫc/(6πµR

2γ̇) ≈
30 and h∗

cǫ
∗
c/(6πµγ̇) ≈ 2000, respectively. In Tab. I, dif-

fusion coefficients for volume fractions Φ = 0.2 and 0.4
are shown at varying hc and ǫc for different lubrication
models at resolution R = 4. Additionally, data for res-
olutions R = 2 and 8 is shown where hc and h∗

c are
kept fixed and ǫc and ǫ∗c are chosen such that the respec-
tive dimensionless maximum repulsion is the same as for
R = 4. The numbers do not seem very sensitive to even
large changes in the short-range parameters of hc to 50 or
1000 and of ǫc to 0.1 or 0.001, the largest relative change
being a reduction of about 12% at Φ = 0.4 for hc = 0.1.
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h
(∗)
c ǫ

(∗)
c model R Dx(Φ=0.2) Dx(Φ=0.4)

0.01 100 full 4 0.011 ± 0.0004 0.066 ± 0.002

0.1 100 full 4 0.012 0.058

0.001 100 full 4 0.010 0.068

0.01 50 full 4 0.011 0.064

0.01 1000 full 4 0.011 0.063

0.01 100 normal only 4 0.0073 0.041

0.04 100 link-based 4 0.020 0.11

0.01 100 full 2 0.011 0.062

0.01 100 normal only 2 0.0070 0.035

0.04 400 link-based 2 0.021 0.10

0.01 100 full 8 0.011 0.068

0.01 100 normal only 8 0.0085 0.050

0.04 25 link-based 8 0.019 0.14

TABLE I. Shear-induced self-diffusion Dx in the velocity-
gradient direction for spherical particles at volume fractions
Φ = 0.2 and 0.4 using different lubrication models, resolutions
R, and short-range numerical parameters hc and ǫc (h∗

c and
ǫ∗c in case of link-based lubrication corrections). The parti-
cle Reynolds number is Rep = 4R2γ̇/ν = 0.24. Statistical
error estimates are computed from simulations with different
random seeds for hc = 0.01, ǫc = 100, and R = 4 exemplarily.

Interestingly, the same change effects an increase of Dx

at Φ = 0.2. Values ǫc < 50 do not suffice to prevent par-
ticles from overlapping in the present simulations. It is
surprising that for Φ = 0.2, diffusion remains unchanged
when reducing the resolution to only R = 2 or doubling
it to R = 8 and also at Φ = 0.4 there hardly is a sig-
nificant dependency on R. It appears that shear-induced
self-diffusion at the volume fractions considered is deter-
mined rather by short-range lubrication interactions than
by hydrodynamic interactions acting over larger length
scales that could be resolved by pure LB simulations at
practical resolutions of the particle radii. The results
for purely normal and link-wise lubrication corrections
remain qualitatively unchanged when varying the reso-
lution: without non-normal corrections, diffusion is re-
duced by 23 to 44%, the link-wise model leads to an
increase between 61 and 106%, depending on resolution
and volume fraction. Unlike the full model, the two other
methods show a significant dependency on the resolution
except for the link-based model at Φ = 0.2.

There seems to be less freedom in the choice of the
short range parameters h∗

c and ǫ∗c associated with the
link-based lubrication model than for the contact-based
model. Significant deviations from the combination h∗

c =
0.04 and ǫ∗c = 100 at R = 4 are often found to lead
to numerical instabilities even when the time step for
the particle update is reduced. Still, the over-estimation
of diffusion by the link-wise model is too strong to be
attributed solely to the treatment of particle contacts.
The stability problems might be caused by the relatively
large discretization errors of the method that are visible

in Fig. 5. A related issue consists in contacts with large
curvatures of the involved particle surfaces staying unde-
tected due to an insufficient resolution of the surfaces by
lattice links. In consequence, unphysically close approach
or even overlap of particles is possible. If the discretiza-
tion changes because the involved particles are moving
with respect to the lattice, the contact can get resolved
and large repulsive forces and changes in the particles’ re-
sistances can emerge suddenly. Though such events are
rare and thus are not expected to affect the observables
in a large system they can cause a simulation to crash.
At large particle resolutions, as chosen by Clausen [33],
this problem is less likely to occur.

As a second benchmark, the shear viscosity of sus-
pensions is considered. For viscosity computation, the
method successfully applied before [30] is used: differ-
ent from the full Lees-Edwards boundary conditions em-
ployed above, the particles are now prevented from cross-
ing the sheared boundaries at which the shear stress σ is
computed. To exclude boundary effects, the shear rate γ̇
and the actual particle volume fraction Φ are computed
only from the particles in the central half of the system.
Depending on the volume fraction and particle aspect
ratio, the total simulations comprise between about 600
and 9000 particles which is more than sufficient to ob-
tain reliable results [42]. At the beginning of a simula-
tion, each system is allowed a time of the order of 20γ̇−1

for equilibration. An equally long consecutive interval of
time is used for data accumulation. The statistical errors
are estimated from the fluctuations of γ̇ and σ over time
that are propagated into the relative suspension viscosity
µr = (σ/γ̇)/µ.

The viscosities thus obtained are plotted as a func-
tion of Φ in Fig. 10(a) in the case of spheres. The res-
olution is R = 4 and again the three different lubri-
cation models are compared: the contact-based model
developed above, the link-based model briefly sketched
in section II, and the contact-based model with all non-
normal corrections disabled. Of these three cases, the
full contact-based model clearly shows the best consis-
tency with the accelerated Stokesian dynamics simula-
tions by Sierou and Brady [42] and the simpler method
by Bertevas et al. [13] that both similarly aim at the sim-
ulation of purely hydrodynamically interacting particles
at low Reynolds number shear flow. While the link-wise
model leads to an over-prediction of viscosities, the omis-
sion of non-normal corrections results in erroneously low
viscosities. In view of Fig. 5(b) and Fig. 6(b) it seems
plausible to attribute these errors directly to the over- or
under-prediction of non-normal lubrication interactions.
The similarity of the data for purely normal lubrication
corrections as compared with the results by Hyväluoma
et al. [25] obtained at a somewhat higher resolution of
R = 6 using normal lubrication corrections of the type
of Eq. 11 confirms the validity of the LB implementa-
tion and of the procedure for viscosity measurement em-
ployed here. It is interesting that for Φ . 0.2 all three
lubrication models produce viscosities that are hard to
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FIG. 10. (Color online) Relative suspension viscosity µr in de-
pendence on the solid volume fraction Φ as obtained with the
full contact-based corrections, the same with non-normal cor-
rections disabled, and the link-based approach for (a) spheres
with radius R = 4, (b) oblates with R‖ = 2, R⊥ = 6 (aspect
ratio Λ = 1/3), and (c) prolates with R‖ = 6, R⊥ = 2 (Λ = 3).
For spheres, data is compared with results from LB simula-
tions with only normal corrections at R = 6 by Hyväluoma et

al. [25], accelerated Stokesian dynamics simulations by Sierou
and Brady [42] and the method by Bertevas et al. [13]. Also
for oblates, data for the least aspherical aspect ratio Λ = 0.3
studied by Bertevas et al. [13] is shown. Error bars for origi-
nal data are drawn only where larger than the corresponding
symbol.

distinguish, even on the logarithmic scale of µr in the
figure. Apparently, lubrication interactions, at least the
non-normal ones, contribute only weakly to the viscosity
at these volume fractions.

Tab. II compares the viscosities resulting from a vari-
ation of the short-range parameters for Φ = 0.5 where
the effect of lubrication interactions is strongest. Appar-
ently, varying ǫc has no significant effect on the resulting
viscosities. Better resolving lubrication interactions by
reducing hc to only 0.001 leads to an increase of µr that
is noticeable but still smaller than 10%. Reducing the
resolution of lubrication corrections, however, by choos-

h
(∗)
c ǫ

(∗)
c model R Φ [10−2] Rep µr

0.01 100 full 4 48.2± 0.9 0.14 11.1± 0.3

0.1 100 full 4 48± 3 0.15 8.9± 0.3

0.001 100 full 4 48.2± 0.8 0.13 11.8± 0.3

0.01 50 full 4 48.2± 0.7 0.14 10.9± 0.3

0.01 1000 full 4 48± 1 0.14 10.9± 0.4

0.01 100 normal only 4 48± 1 0.16 8.1± 0.2

0.04 100 link-based 4 48.0± 0.4 0.10 20± 1

0.01 100 full 2 48± 1 0.15 8.8± 0.4

0.01 100 normal only 2 48± 3 0.17 5.9± 0.2

0.04 400 link-based 2 46.4± 0.5 0.16 9.9± 0.6

0.01 100 full 8 48.4± 0.7 0.13 12.4± 0.2

0.01 100 normal only 8 48.3± 0.9 0.14 9.6± 0.2

0.04 25 link-based 8 48.0± 0.6 0.08 28± 1

TABLE II. Relative shear viscosity µr of dense (Φ ≈ 0.5) sus-
pensions of spherical particles for different lubrication models,
resolutions R, and short-range numerical parameters hc and
ǫc (h∗

c and ǫ∗c in case of link-based lubrication corrections).
The effective volume fraction Φ and particle Reynolds num-
ber Rep = 4R2γ̇/ν vary slightly due to the simulation setup.

ing hc = 0.1 causes a reduction of the viscosity by 20%
to a value that is actually closer to data without non-
normal corrections than to data from the full model at
hc = 0.01. Variations in the volume fraction Φ or the
particle Reynolds number Rep appear too small to be
of significant influence here, the latter being in fact the
consequence of differing viscosities in the bulk of the sim-
ulation. Tab. II also shows the viscosities computed for
the different lubrication models at the resolutions R = 2
and 8. For R = 2, the viscosities are clearly reduced with
respect to R = 4, in the case of the link-based model to
only 50%. Changing the resolution to R = 8 increases
the viscosity by about 12% for the full contact-based
model while at R = 2 a reduction by 21% is seen. If
the Stokesian dynamics results are assumed to represent
the correct viscosities, both increasing R to 8 and de-
creasing hc to 0.001 slightly improves the accuracy of
the present model. From the only small improvement
induced by already considerable changes of R and hc it
can be concluded, however, that the viscosities obtained
with the present parameters are already close to the value
theoretically achieved for hc = 0 and infinite resolution.
While doubling the spatial resolution in an LB simula-
tion at fixed τ increases the computational effort by a
factor of 25 = 32, also reducing the short-range cut-off
to hc = 0.001 moderately increases the computational
cost by demanding each LB time step to be subdivided
in 20 instead of 10 sub-steps for the particle update in
order to keep the simulation stable. Compared to other
three-dimensional LB suspension models [25, 26] at even
higher resolution, the present approach performs well in
reproducing the viscosity already in well-affordable sim-



15

h
(∗)
c ǫ

(∗)
c model R‖ Φ [10−2] Rep µr

0.01 100 full 2 48.3± 0.5 0.18 7.1± 0.2

0.1 100 full 2 48.3± 0.5 0.18 7.0± 0.2

0.001 1000 full 2 48.4± 0.4 0.18 7.0± 0.2

0.01 80 full 2 48.4± 0.4 0.18 7.1± 0.2

0.01 1000 full 2 48.4± 0.5 0.18 7.1± 0.3

0.01 100 normal only 2 48.3± 0.4 0.20 4.9± 0.1

0.04 100 link-based 2 48.4± 0.5 0.12 18.8± 0.9

0.01 100 full 4 48.7± 0.6 0.16 8.7± 0.2

0.01 100 normal only 4 48.7± 0.6 0.18 6.2± 0.2

0.04 25 link-based 4 48.7± 0.5 0.07 38± 2

TABLE III. Data corresponding to Tab. II for oblate
spheroids with half axes R‖ and R⊥ = 3R‖. Rep is computed

based on an average radius (R‖R
2
⊥)

1/3.

h
(∗)
c ǫ

(∗)
c model R‖ Φ [10−2] Rep µr

0.01 100 full 6 48.5± 0.4 0.08 7.7± 0.1

0.1 100 full 6 48.4± 0.4 0.09 6.9± 0.1

0.001 100 full 6 48.5± 0.4 0.08 7.6± 0.1

0.01 50 full 6 48.5± 0.4 0.08 7.6± 0.1

0.01 1000 full 6 48.5± 0.3 0.08 7.63± 0.09

0.01 100 normal only 6 48.4± 0.4 0.10 4.56± 0.06

0.04 100 link-based 6 47.9± 0.4 0.07 12.7± 0.4

0.01 100 full 12 49.3± 0.5 0.07 9.7± 0.1

0.01 100 normal only 12 49.2± 0.5 0.09 6.18± 0.09

0.04 25 link-based 12 49.2± 0.6 0.04 24.9± 0.6

TABLE IV. Data corresponding to Tab. II and Tab. III for
prolate spheroids with half axes R‖ and R⊥ = R‖/3.

ulations at R = 4 and hc = 0.01 thanks to the inclusion
of the non-normal lubrication corrections. Without non-
normal corrections the viscosity is closest to the Stoke-
sian dynamics results for the highest resolution R = 8
and the differences to data at R = 2 and R = 4 suggest
that the numbers would converge at even larger R. The
same might be true for the link-based model but here,
between R = 4 and 8 an increase of still 40% is visible
while µr appears to be over-predicted already.

Fig. 10(b) and (c) display the relative viscosity of sus-
pensions of spheroids as a function of the volume fraction
for the different lubrication models. In (b) the aspect ra-
tio is Λ = 1/3 (oblates), in (c) it is 3 (prolates). In
both cases the smaller half-axis is chosen to be 2. As
expected now, the link-wise model leads to an enlarged
µr, disabling non-normal lubrication interactions in the
contact-based model to a reduced µr. For Φ & 0.3 the full
contact-based model, which is believed to be most cor-
rect, predicts a clear reduction of the viscosity of prolates
as compared to spheres and of oblates as compared to
prolates. The result for oblates seems inconsistent with
the work of Bertevas et al. [13] who report for oblate

spheroids of aspect ratio 0.3 at volume fractions up to
Φ = 0.25 a higher viscosity than for spheres at the same
volume fraction. Unfortunately, Ref. [13] provides no
data for spheroidal particles at Φ > 0.25. One has to con-
sider that in their work the non-singular long-range hy-
drodynamic interactions of particles are neglected which
especially at lower volume fractions might cause parti-
cles to approach closer than they would otherwise do.
This would certainly increase the viscosity. If, due to
the large regions of low curvature and the increased sur-
face area this mechanism is stronger for oblates than for
spheres it could explain the inconsistency. Another possi-
ble explanation is that in the model of Bertevas et al. [13]
the particle Reynolds number is strictly Rep = 0 while
in the present LB simulation it is small but finite with
Rep ∼ 10−1. It is hard to explain, however, how iner-
tia could cause a reduction of the viscosity of oblates,
especially since with respect to the viscosity of sphere
suspensions the method by Bertevas et al. [13] hardly
differs from the present LB model at the respective vol-
ume fractions.

In Tab. III and Tab. IV the effect of varying the
short-range parameters and the resolution on the viscos-
ity is demonstrated at Φ = 0.5 for oblate and prolate
spheroids. The influence of the short-range parameters
is smaller than for spheres and only increasing hc from
0.01 to 0.1 in the case of prolates leads to a significant
change in the suspension viscosity, namely a reduction by
about 10%. As for spheres, doubling the resolution leads
to higher viscosities. The increase is larger for spheroids,
in the case of the link-wise model it amounts to roughly
100% for oblates and prolates. The viscosities obtained
from the contact-based model, both with and without
non-normal corrections, increase by about 25% and 35%
for oblates and prolates, respectively. This result is in line
with Fig. 4 and Fig. 7 above that also demonstrate that
due to their potentially smaller local curvature, a higher
resolution is required for spheroids than for spheres in
order to achieve a comparable degree of convergence. It
is interesting to examine the influence that the choice of
lubrication model has over the full range of volume frac-
tions Φ in Fig. 10 in the case of spheroids as compared
to spheres: while for spheres no significant influence is
visible for Φ . 0.25, the contact-based model without
non-normal interactions leads to a reduced viscosity for
prolates already at Φ ≈ 0.2 and for oblates at the same
volume fractions the results of all three models differ. At
larger Φ the discrepancy between the models continues
to grow. The finding is consistent with the conclusion
of Bertevas et al. [13] stating an increased importance
of tangential lubrication interactions in suspensions of
oblate spheroids compared to spherical particles.

V. CONCLUSIONS

The present paper implements a contact-based method
for lubrication corrections in the spirit of Nguyen and
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Ladd [27] that, thanks to taking into account all lead-
ing singular terms of the resistance matrix of the in-
volved surfaces near contact [10, 11], is applicable also
to spheroidal particles. An extension to more general
but smooth particle shapes is straightforward as long as
the contacts between particles are such that they would
touch in single points and an efficient method for find-
ing these contacts is known. An extension to shapes
such as cylinders, that might approach in line contacts,
might be achievable following the arguments of Butler
and Shaqfeh [38]. Since the lubrication corrections de-
pend on the local properties of the surfaces only, non-
uniform particle dispersions with different sizes and as-
pect ratios can be modeled in the present implementation
already.

In the case of spheres, the method shows high accuracy
in the resistances of two particles near contact as com-
pared to theoretical findings [45]. The results obtained
for self-diffusion and viscosity in low Reynolds number
shear flow of suspensions with volume fractions between
Φ = 0.1 and 0.5 are highly consistent with Stokesian dy-
namics simulations [40, 42]. For these results, a resolu-
tion of the sphere radius with R = 4 lattice sites suffices.
For spheroids, the respective results appear consistent
when comparing simulations at different resolutions but
due to the possibly smaller local radii of curvature, dis-
cretization errors play a larger role than for spheres and
resolving the smaller half-axis with only 1 lattice unit
cannot be recommended. For volume fractions Φ & 0.3,
the model predicts a reduction of the suspension viscos-
ity of prolates with aspect ratio Λ = 3 as compared to
spheres and a further reduction of oblates with aspect
ratio 1/3 as compared to prolates.

Neglecting the non-normal lubrication corrections, as
it is done by many authors simulating spherical parti-
cles [24, 25, 43], leads to an under-estimation of shear-
induced diffusion and viscosity. A link-wise method for
lubrication correction, similar to the initial work by Ding
and Aidun [31], that over-predicts all non-normal lubri-
cation interactions, effects an over-estimation of shear-
induced diffusion and suspension viscosity. The error in
the diffusion coefficient is seen for all volume fractions Φ.
This is no surprise since it is known that shear-induced
diffusion can critically depend on the short-range inter-
actions of particles [49] and already small inconsistencies
summed up over many encounters can result in consider-
able errors in the long-time behavior of the mean-square
displacement. Remarkably, the diffusion coefficients com-
puted from the full contact-based model at a resolution
as low as R = 2 appear more consistent with diffusion
coefficients from the same method at higher resolution
and from Stokesian dynamics simulations than the ones
from any of the other two methods tested at R = 8. The
viscosity of spheres only slowly starts to depend on the

non-normal corrections around Φ = 0.3. For spheroids,
however, an effect is found already around Φ = 0.2. It
can be concluded that while non-normal lubrication cor-
rections might indeed be of only minor importance for
some simulations involving spheres, their proper consid-
eration is essential, even at comparably large resolutions,
such as R = 8 for spheres, once shear-induced diffusion
of spherical or the viscosity of spheroidal particles is of
interest.
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Appendix: Diverging elements of K

The diverging elements of K that can be computed
from the local curvatures alone are directly taken from
Cox [10] and listed below only for completeness. The
remaining elements that depend also on Γ0−3 and Γ′

0−3

and on the coefficients of a fourth-order expansion can,
in principle, be obtained by comparing the negative
forces and torques on the fluid as presented by Claeys
and Brady [11] with Eq. 21. However, it has been
noted [50] that the derivations of the remaining diverg-
ing elements [11] suffer from a sign error that propagates
into the equations (2.19a) to (2.20) of Ref. [11]. In con-
sequence, the signs of (2.19c-d) are flipped; (2.19a-b)
and (2.20) are affected in a more complex way. Follow-
ing Staben et al. [50] it is straightforward to recalculate
(2.19a-d) in the general case from which Eq. A.3, Eq. A.7,
Eq. A.11, and Eq. A.12 below are obtained. The results
are verified by the fact that following the same proce-
dure while imposing the original sign error [11, 50] yields
exactly the original terms [11]. Assuming particle j in
Eq. 21 to be a flat wall with velocity Vj = 0 lets Eq. A.11
produce a force or torque identical to equations (2.12b)
or (2.16a) in the work by Staben et al. [50]. Unfortu-
nately, Eq. A.7 results in just the opposite of (2.15b) or
(2.16b) of Ref. [50]. It is believed that this is caused ei-
ther by a typographical error or by an inconsistency in
Ref. [50] with respect to whether the equations describe
the effect on the fluid by the particle or vice versa. A
recalculation of (2.20) [11] would be considerably more
involved [11, 50] and is therefore omitted which means
that the lnh contribution in Eq. A.10 is missing which
at small h, however, is dominated by the h−1 term any-
way.
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2

[

3 sin2 χ(1 − λ1S2)
2

(3λ1 + 2λ2)λ1
+

3 cos2 χ(1− λ2S2)
2

(2λ1 + 3λ2)λ2
+ S2

2

]

(A.6)

K23 = K32 =
−3π lnh

2
√
λ1λ2(λ1 + λ2)

×
[

[

−2
√

λ1(3κ0λ1 + κ2λ2) +
3

2S2

√
λ1

((7λ1 + 2λ2)κ0 + (λ1 + 2λ2)κ2)

]

sinχ

3λ1 + 2λ2

+

[

2
√

λ2(κ1λ1 + 3κ3λ2)−
3

2S2

√
λ2

((2λ1 + λ2)κ1 + (2λ1 + 7λ2)κ3)

]

cosχ

2λ1 + 3λ2

+ 3Γ3

(

sin2 χ

λ1
+

cos2 χ

λ2

)

+ 2Γ2 sinχ cosχ

(

1

λ2
− 1

λ1

)

+ Γ1

(

cos2 χ

λ1
+

sin2 χ

λ2

)

]

(A.7)

K24 = K42 =
−3π lnh√
λ1λ2S2

[

sin2 χ(1− λ1S2)

(3λ1 + 2λ2)λ1
+

cos2 χ(1− λ2S2)

(2λ1 + 3λ2)λ2

]

(A.8)

K25 = K52 =
3π lnh√
λ1λ2S2

sinχ cosχ

[

− 1− λ1S2

(3λ1 + 2λ2)λ1
+

1− λ2S2

(2λ1 + 3λ2)λ2

]

(A.9)

K33 =
3π

h
√
λ1λ2(λ1 + λ2)

(A.10)

K34 = K43 =
9π lnh

4
√
λ1λ2(λ1 + λ2)

[

(2λ1 + λ2)κ1 + (2λ1 + 7λ2)κ3√
λ2(2λ1 + 3λ2)

cosχ− (λ1 + 2λ2)κ2 + (7λ1 + 2λ2)κ0√
λ1(3λ1 + 2λ2)

sinχ

]

(A.11)

K35 = K53 =
−9π lnh

4
√
λ1λ2(λ1 + λ2)

[

(λ1 + 2λ2)κ2 + (7λ1 + 2λ2)κ0√
λ1(3λ1 + 2λ2)

cosχ+
(2λ1 + λ2)κ1 + (2λ1 + 7λ2)κ3√

λ2(2λ1 + 3λ2)
sinχ

]

(A.12)
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K36 = K63 =
−3π lnh

2
√
λ1λ2(λ1 + λ2)

sinχ cosχ

[

1

S1
− 1

S2

] [

1

λ1
− 1

λ2

]

(A.13)

K44 =
−3π lnh√

λ1λ2

[

sin2 χ

(3λ1 + 2λ2)λ1
+

cos2 χ

(2λ1 + 3λ2)λ2

]

(A.14)

K45 = K54 =
3π lnh√
λ1λ2

sinχ cosχ

[ −1

(3λ1 + 2λ2)λ1
+

1

(2λ1 + 3λ2)λ2

]

(A.15)

K55 =
−3π lnh√

λ1λ2

[

cos2 χ

(3λ1 + 2λ2)λ1
+

sin2 χ

(2λ1 + 3λ2)λ2

]

(A.16)

Some of the symbols in Eq. A.1 to Eq. A.16 still re-
quire clarification. This information is accessible also
in Ref. [11] and, partly, [10] but is summarized here to
make the above description self-contained. As visible in
Fig. 3, φ is the angle between the axes of principal curva-
ture x1 and x′

1 and between x2 and x′
2 of both surfaces.

In the derivation of the singular terms, the height of the
quadratically approximated gap between the surfaces de-
fined by Eq. 19 and Eq. 20 is brought to the simple form

hz = 1 + λ1x̂
2
1 + λ2x̂

2
2 (A.17)

in terms of rescaled coordinates x̂1 and x̂2 where the new
principal curvatures λ1 and λ2 are the eigenvalues of the
matrix











1

2S1
+

cos2 φ

2S′
1

+
sin2 φ

2S′
2

sinφ cosφ

2

(

1

S′
1

− 1

S′
2

)

sinφ cosφ

2

(

1

S′
1

− 1

S′
2

)

1

2S2
+

sin2 φ

2S′
1

+
cos2 φ

2S′
2











.

The trigonometric functions of the angle χ that trans-
forms between the directions of principal curvature x1

and x2 and the main axes x̂1 and x̂2 can be obtained from
the components of the corresponding normalized eigen-

vectors l̂1 and l̂2, which form the transformation matrix,
for instance

l̂2 =

(

sinχ

cosχ

)

. (A.18)

The κ0−3 describe the cubic features of both surfaces in
the coordinate frame defined by x̂1 and x̂2. Knowing φ,

it is possible to express the cubic terms, characterized by
Γ′
0−3 in Eq. 20, in the principal frame x1 and x2 of the

other surface. The transformation can be described by a
set of 4 functions mi(α, a0, a1, a2, a3) of a transformation
angle α and a set of cubic coefficients a0−3 defined as

m0 = a0 cos
3 α− a1 sinα cos2 α

+ a2 sin
2 α cosα− a3 sin

3 α

m1 = a03 sinα cos2 α+ a1(cos
3 α− 2 sin2 α cosα)

+ a2(sin
3 α− 2 sinα cos2 α) + a33 sin

2 α cosα

m2 = a03 cosα sin2 α+ a1(2 cos
2 α sinα− sin3 α)

+ a2(cos
3 α− 2 cosα sin2 α)− a3(3 cos

2 α sinα)

m3 = a0 sin
3 α+ a1 cosα sin2 α

+ a2 cos
2 α sinα+ a3 cos

3 α (A.19)

and then reads

βi = mi(φ,Γ
′
0,Γ

′
1,Γ

′
2,Γ

′
3) . (A.20)

The same functional dependency is used to transform the
added cubic coefficients ki = Γi+ βi into the frame of x̂1

and x̂2. The rescaled coordinates demand rescaling also
of the cubic coefficients to obtain

κi =
mi(χ, k0, k1, k2, k3)√

λ1
3−i√

λ2
i

. (A.21)

[1] M. Lopez and M. D. Graham, Physics of Fluids 19,
073602 (2007).

[2] J. R. Clausen, D. A. Reasor, and C. K. Aidun, Journal
of Fluid Mechanics 685, 202 (2011).

[3] T. Krüger, Computer simulation study of collective phe-

nomena in dense suspensions of red blood cells under

shear, Ph.D. thesis, Ruhr-Universität Bochum (2012).
[4] H. Zhao, E. S. G. Shaqfeh, and V. Narsimhan, Physics

of Fluids 24, 011902 (2012).



19

[5] X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti,
and T. Podgorski, Phys. Rev. Lett. 110, 108101 (2013).

[6] T. Omori, T. Ishikawa, Y. Imai, and T. Yamaguchi, J.
Fluid Mech. 724, 154 (2013).

[7] K. Yeo and M. R. Maxey,
Physics of Fluids 25, 053303 (2013).

[8] B. Metzger, P. Pham, and J. E. Butler,
Phys. Rev. E 87, 052304 (2013).

[9] A. Goldman, R. Cox, and H. Brenner,
Chemical Engineering Science 22, 637 (1967).

[10] R. G. Cox, International Journal of Multiphase Flow 1, 343 (1974).
[11] I. L. Claeys and J. F. Brady, PhysicoChem. Hydrodyn

11, 261 (1989).
[12] I. L. Claeys and J. F. Brady, J. Fluid Mech. 251, 411

(1993).
[13] E. Bertevas, X. Fan, and R. I. Tanner,

Rheol. Acta 49, 53 (2010).
[14] S. Succi, The Lattice Boltzmann Equation for Fluid Dy-

namics and Beyond, Numerical Mathematics and Scien-
tific Computation (Oxford University Press, 2001).

[15] A. J. C. Ladd, J. Fluid Mech. 271, 285 (1994).
[16] A. J. C. Ladd, J. Fluid Mech. 271, 311 (1994).
[17] A. J. C. Ladd and R. Verberg,

J. Stat. Phys. 104, 1191 (2001).
[18] C. K. Aidun and J. R. Clausen,

Annu. Rev. Fluid Mech. 42, 439 (2010).
[19] C. Kunert, J. Harting, and O. I. Vinogradova,

Phys. Rev. Lett. 105, 016001 (2010).
[20] C. Kunert and J. Harting,

IMA Journal of Applied Mathematics 76, 761 (2011).
[21] S. Schwarzer, Phys. Rev. E 52, 6461 (1995).
[22] M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann,

Phys. Rev. E 72, 011408 (2005).
[23] N. S. Martys, Journal of Rheology 49, 401 (2005).
[24] A. J. C. Ladd, Physics of Fluids 9, 491 (1997).
[25] J. Hyväluoma, P. Raiskinmäki, A. Koponen, M. Kataja,

and J. Timonen, J. Stat. Phys. 121, 149 (2005).
[26] J. Kromkamp, D. T. M. van den Ende, D. Kandhai,

R. G. M. van der Sman, and R. M. Boom, Chemical
engineering science 61, 858 (2006).

[27] N.-Q. Nguyen and A. J. C. Ladd,
Phys. Rev. E 66, 046708 (2002).

[28] D. Qi, L. Luo, R. Aravamuthan, and W. Strieder,
J. Stat. Phys. 107, 101 (2002).

[29] F. Günther, F. Janoschek, S. Frijters, and J. Harting,
Computers & Fluids 80, 184 (2013).

[30] F. Janoschek, F. Toschi, and J. Harting,
Phys. Rev. E 82, 056710 (2010).

[31] E.-J. Ding and C. K. Aidun,
J. Stat. Phys. 112, 685 (2003).

[32] R. M. MacMeccan, J. R. Clausen, G. P. Neitzel, and
C. K. Aidun, Journal of Fluid Mechanics 618, 13 (2009).

[33] J. R. Clausen, The effect of particle deformation on the

rheology and microstructure of noncolloidal suspensions,
Ph.D. thesis, Georgia Institute of Technology (2010).

[34] Y. H. Qian, D. d’Humières, and P. Lallemand,
Europhys. Lett. 17, 479 (1992).

[35] C. K. Aidun, Y. Lu, and E.-J. Ding, J. Fluid Mech. 373,
287 (1998).

[36] F. Janoschek, F. Toschi, and J. Harting,
Macromolecular Theory and Simulations 20, 562 (2011).

[37] A. Lin and S.-P. Han, SIAM Journal on Optimization 13,
298 (2002).

[38] J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468,
205 (2002).

[39] A. Komnik, J. Harting, and H. J. Herrmann, Journal of
Statistical Mechanics: theory and experiment P12003

(2004).
[40] A. Sierou and J. F. Brady, Journal of Fluid Mechanics

506, 285 (2004).
[41] R. C. Ball and J. R. Melrose, Advances in colloid and

interface science 59, 19 (1995).
[42] A. Sierou and J. F. Brady, Journal of Rheology 46, 1031

(2002).
[43] S. Frijters, F. Günther, and J. Harting,

Soft Matter 8, 6542 (2012).
[44] A. R. Thornton, T. Weinhart, V. Ogarko, and S. Luding,

Computer methods in materials science 13, 197 (2013).
[45] D. J. Jeffrey and Y. Onishi,

J. Fluid Mech. 139, 261 (1984).
[46] S. Kim and S. J. Karrila, Microhydrodynamics: principles

and selected applications (Dover Publications Inc., New
York, 2005).

[47] J. R. Clausen, D. A. Reasor Jr., and C. K. Aidun, Com-
puter Physics Communications 181, 1013 (2010).

[48] E. Lorenz, A. G. Hoekstra, and A. Caiazzo, Phys. Rev.
E 79, 036706 (2009).

[49] F. R. da Cunha and E. J. Hinch, J. Fluid Mech. 309, 211
(1996).

[50] M. E. Staben, A. Z. Zinchenko, and R. H. Davis, J. Fluid
Mech. 553, 187 (2006).

http://dx.doi.org/10.1063/1.4802844
http://dx.doi.org/10.1103/PhysRevE.87.052304
http://dx.doi.org/10.1016/0009-2509(67)80047-2
http://dx.doi.org/10.1016/0301-9322(74)90019-6
http://dx.doi.org/10.1007/s00397-009-0390-8
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001783
http://dx.doi.org/10.1023/A:1010414013942
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1103/PhysRevLett.105.016001
http://dx.doi.org/10.1093/imamat/hxr001
http://dx.doi.org/ 10.1103/PhysRevE.72.011408
http://dx.doi.org/10.1122/1.1849187
http://dx.doi.org/10.1063/1.869212
http://dx.doi.org/10.1007/s10955-005-4314-4
http://dx.doi.org/10.1103/PhysRevE.66.046708
http://dx.doi.org/ 10.1023/A:1014502402884
http://dx.doi.org/10.1016/j.compfluid.2012.03.020
http://dx.doi.org/10.1103/PhysRevE.82.056710
http://dx.doi.org/10.1023/A:1023880126272
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1002/mats.201100013
http://dx.doi.org/10.1039/C2SM25209K
http://dx.doi.org/10.1017/S0022112084000355

