24 research outputs found

    The MSO+U theory of (N, <) is undecidable

    Get PDF
    We consider the logic MSO+U, which is monadic second-order logic extended with the unbounding quantifier. The unbounding quantifier is used to say that a property of finite sets holds for sets of arbitrarily large size. We prove that the logic is undecidable on infinite words, i.e. the MSO+U theory of (N,<) is undecidable. This settles an open problem about the logic, and improves a previous undecidability result, which used infinite trees and additional axioms from set theory.Comment: 9 pages, with 2 figure

    Stable graphs of bounded twin-width

    Full text link
    We prove that every class of graphs C\mathscr C that is monadically stable and has bounded twin-width can be transduced from some class with bounded sparse twin-width. This generalizes analogous results for classes of bounded linear cliquewidth and of bounded cliquewidth. It also implies that monadically stable classes of bounded twin-widthare linearly χ\chi-bounded.Comment: 44 pages, 2 figure

    LOIS: an application of SMT solvers *

    Get PDF
    Abstract We present an implemented programming language called LOIS, which allows iterating through certain infinite sets, in finite time. We argue that this language offers a new application of SMT solvers to verification of infinite-state systems, by showing that many known algorithms can easily be implemented using LOIS, which in turn invokes SMT solvers for various theories. In many applications, ω-categorical theories with quantifier elimination are of particular interest. Our tests indicate that state-of-the art solvers perform poorly on such theories, as they are outperformed by orders of magnitude by a simple quantifier-elimination procedure

    Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

    Full text link
    Monadically stable and monadically NIP classes of structures were initially studied in the context of model theory and defined in logical terms. They have recently attracted attention in the area of structural graph theory, as they generalize notions such as nowhere denseness, bounded cliquewidth, and bounded twinwidth. Our main result is the - to the best of our knowledge first - purely combinatorial characterization of monadically stable classes of graphs, in terms of a property dubbed flip-flatness. A class C\mathcal{C} of graphs is flip-flat if for every fixed radius rr, every sufficiently large set of vertices of a graph GCG \in \mathcal{C} contains a large subset of vertices with mutual distance larger than rr, where the distance is measured in some graph GG' that can be obtained from GG by performing a bounded number of flips that swap edges and non-edges within a subset of vertices. Flip-flatness generalizes the notion of uniform quasi-wideness, which characterizes nowhere dense classes and had a key impact on the combinatorial and algorithmic treatment of nowhere dense classes. To obtain this result, we develop tools that also apply to the more general monadically NIP classes, based on the notion of indiscernible sequences from model theory. We show that in monadically stable and monadically NIP classes indiscernible sequences impose a strong combinatorial structure on their definable neighborhoods. All our proofs are constructive and yield efficient algorithms.Comment: v2: revised presentation; renamed flip-wideness to flip-flatness; changed the title from "Indiscernibles and Wideness [...]" to "Indiscernibles and Flatness [...]

    First-Order Model Checking on Monadically Stable Graph Classes

    Full text link
    A graph class C\mathscr{C} is called monadically stable if one cannot interpret, in first-order logic, arbitrary large linear orders in colored graphs from C\mathscr{C}. We prove that the model checking problem for first-order logic is fixed-parameter tractable on every monadically stable graph class. This extends the results of [Grohe, Kreutzer, and Siebertz; J. ACM '17] for nowhere dense classes and of [Dreier, M\"ahlmann, and Siebertz; STOC '23] for structurally nowhere dense classes to all monadically stable classes. As a complementary hardness result, we prove that for every hereditary graph class C\mathscr{C} that is edge-stable (excludes some half-graph as a semi-induced subgraph) but not monadically stable, first-order model checking is AW[]\mathrm{AW}[*]-hard on C\mathscr{C}, and W[1]\mathrm{W}[1]-hard when restricted to existential sentences. This confirms, in the special case of edge-stable classes, an on-going conjecture that the notion of monadic NIP delimits the tractability of first-order model checking on hereditary classes of graphs. For our tractability result, we first prove that monadically stable graph classes have almost linear neighborhood complexity. Using this, we construct sparse neighborhood covers for monadically stable classes, which provides the missing ingredient for the algorithm of [Dreier, M\"ahlmann, and Siebertz; STOC '23]. The key component of this construction is the usage of orders with low crossing number [Welzl; SoCG '88], a tool from the area of range queries. For our hardness result, we prove a new characterization of monadically stable graph classes in terms of forbidden induced subgraphs. We then use this characterization to show that in hereditary classes that are edge-stable but not monadically stable, one can effectively interpret the class of all graphs using only existential formulas.Comment: 55 pages, 13 figure
    corecore