37,737 research outputs found
Evolution Strategies in Optimization Problems
Evolution Strategies are inspired in biology and part of a larger research
field known as Evolutionary Algorithms. Those strategies perform a random
search in the space of admissible functions, aiming to optimize some given
objective function. We show that simple evolution strategies are a useful tool
in optimal control, permitting to obtain, in an efficient way, good
approximations to the solutions of some recent and challenging optimal control
problems.Comment: Partially presented at the 5th Junior European Meeting on "Control
and Information Technology" (JEM'06), Sept 20-22, 2006, Tallinn, Estonia. To
appear in "Proceedings of the Estonian Academy of Sciences -- Physics
Mathematics
On curves covered by the Hermitian curve
For each proper divisor d of (r^2-r+1), r being a power of a prime, maximal
curves over a finite field with r^2 elements covered by the Hermitian curve of
genus 1/2((r^2-r+1)/d-1) are constructed.Comment: 18 pages, Latex2
Scalar Dark Matter in light of LEP and ILC Experiments
In this work we study a scalar field dark matter model with mass of the order
of 100 MeV. We assume dark matter is produced in the process , that, in fact, could be a background for the standard process
extensively studied at LEP. We constrain the
chiral couplings, and , of the dark matter with electrons through an
intermediate fermion of mass GeV and obtain and
for the best fit point of our analysis. We also
analyze the potential of ILC to detect this scalar dark matter for two
configurations: (i) center of mass energy GeV and luminosity
fb, and (ii) center of mass energy TeV
and luminosity fb. The differences of polarized beams
are also explored to better study the chiral couplings.Comment: 15 pages, 6 figures and 1 table. New references added and
improvements in the text. Conclusions unchange
A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859
XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed
persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853.
Here, we present the results of the analysis of recent INTEGRAL observations,
aimed at assessing the long-term variability of the hard X-ray emission, and
thus the stability of the accretion state. We confirm that the source behaves
as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS
J12270-4859 hosts a neutron star in a propeller state, a state we investigate
in detail, developing a theoretical model to reproduce the associated X-ray and
gamma-ray properties. This model can be understood as being of a more general
nature, representing a viable alternative by which LMXBs can appear as
gamma-ray sources. In particular, this may apply to the case of millisecond
pulsars performing a transition from a state powered by the rotation of their
magnetic field, to a state powered by matter in-fall, such as that recently
observed from the transitional pulsar PSR J1023+0038. While the surface
magnetic field of a typical NS in a LMXB is lower by more than four orders of
magnitude than the much more intense fields of neutron stars accompanying
high-mass binaries, the radius at which the matter in-flow is truncated in a
NS-LMXB system is much lower. The magnetic field at the magnetospheric
interface is then orders of magnitude larger at this interface, and as
consequence, so is the power to accelerate electrons. We demonstrate that the
cooling of the accelerated electron population takes place mainly through
synchrotron interaction with the magnetic field permeating the interface, and
through inverse Compton losses due to the interaction between the electrons and
the synchrotron photons they emit. We found that self-synchrotron Compton
processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References
update
Local continuity laws on the phase space of Einstein equations with sources
Local continuity equations involving background fields and variantions of the
fields, are obtained for a restricted class of solutions of the
Einstein-Maxwell and Einstein-Weyl theories using a new approach based on the
concept of the adjoint of a differential operator. Such covariant conservation
laws are generated by means of decoupled equations and their adjoints in such a
way that the corresponding covariantly conserved currents possess some
gauge-invariant properties and are expressed in terms of Debye potentials.
These continuity laws lead to both a covariant description of bilinear forms on
the phase space and the existence of conserved quantities. Differences and
similarities with other approaches and extensions of our results are discussed.Comment: LaTeX, 13 page
- …