8 research outputs found

    Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of High Nature Value farming

    Get PDF
    Understanding how species richness is distributed across landscapes and which variables may be used as predictors is important for spatially targeting management interventions. This study uses finely resolved data over a large geographical area to explore relationships between land-use intensity, habitat heterogeneity and species richness of multiple taxa. It aims to identify surrogate landscape metrics, valid for a range of taxa, which can be used to map and monitor High Nature Value farmland (HNV). Results show that variation in species richness is distributed along two axes: land-use intensity and habitat heterogeneity. At low intensity land-use, species rich groups include wetland plants, plant habitat indicators, upland birds and rare invertebrates, whilst richness of other species groups (farmland birds, butterflies, bees) was associated with higher land-use intensity. Habitat heterogeneity (broadleaved woodland connectivity, hedgerows, habitat diversity) was positively related to species richness of many taxa, both generalists (plants, butterflies, bees) and specialists (rare birds, woodland birds, plants, butterflies). The results were used to create maps of HNV farmland. The proportion of semi-natural vegetation is a useful metric for identifying HNV type 1. HNV type 2 (defined as a mosaic of low-intensity habitats and structural elements) is more difficult to predict from surrogate variables, due to complex relationships between biodiversity and habitat heterogeneity and inadequacies of current remotely sensed data. This approach, using fine-scaled field survey data collected at regular intervals, in conjunction with remotely sensed data offers potential for extrapolating modelled results nationally, and importantly, can be used to assess change over time

    The state of Britain’s larger moths 2021

    Get PDF
    This report summarises current knowledge of the state of Britain’s c.900 species of larger moths, presenting analyses of long-term change based on millions of records gathered through the Rothamsted Insect Survey (RIS) and National Moth Recording Scheme (NMRS)

    Carbon dynamics in a model grassland with functionally different soil communities

    No full text
    1. Impacts of environmental changes on carbon cycling in terrestrial ecosystems are typically correlated with shifts in the composition, biomass and activity of soil faunal communities. Given the role of soil fauna in decomposition, shifts in soil faunal communities may further modify the carbon dynamics of a perturbed system. 2. To test this possibility, we manipulated soil community composition in model grassland ecosystems and used a 13CO2-tracer to follow the assimilation, retention and pathways of recent, photosynthetically fixed carbon. The community treatments formed a nested hierarchy of functional complexity: (1) microbiota only; (2) microbiota and mesofauna; (3) microbiota, mesofauna and macrofauna. 3. These treatments significantly affected the rate of decline in 13C-label respiration rate and the amount of 13C-label retained by the communities: while the rate of decline in 13C-label respiration rate was greatest in the microbiota treatment, the treatment with both micro- and mesofauna retained less 13C-label than either the more functionally complex or simple treatments. The presence of macrofauna altered the utilization of 13C-label by Collembola and Enchytraeidae: they decreased the mass of 13C-label utilized by Collembola and increased that utilized by Enchytraeidae. 4. Our results suggest that soil community composition may play a key role in regulating the dynamics of recent, photosynthetically fixed carbon

    Neotropical woodlice (isopoda) colonizing leaf-litter of pioneer plants in a coal residue disposal environment

    No full text
    The irregular disposal of coal combustion residues has adverse impacts on terrestrial ecosystems. Pioneer plants and soil invertebrates play an important role in the recovery of these areas. The goal of this study was to investigate the colonization patterns of terrestrial isopods (Oniscidea) in leaf litter of three spontaneous pioneer plants (grass - Poaceae, shrub - Euphorbiaceae, tree - Anarcadiaceae) at sites used for fly ash or boiler slag disposal. The experiment consisted of eight blocks (four per disposal site) of 12 litter bags each (four per plant species) that were randomly removed after 6, 35, 70 or 140 days of field exposure. Three isopod species were found in the litter bags: Atlantoscia floridana (van Name, 1940) (Philosciidae; n = 116), Benthana taeniata Araujo & Buckup, 1994 (Philosciidae; n = 817) and Balloniscus sellowii (Brandt, 1833) (Balloniscidae; n = 48). The isopods colonized the three leaf-litter species equally during the exposure period. However, the pattern of leaf-litter colonization by these species suggests a conflict of objectives between high quality food and shelter availability. The occurrence of A. floridana and the abundance and fecundity of B. taeniata were influenced by the residue type, indicating that the isopods have different degrees of tolerance to the characteristics of the studied sites. Considering that terrestrial isopods are abundant detritivores and stimulate the humus-forming processes, it is suggested that they could have an indirect influence on the soil restoration of this area
    corecore