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A B S T R A C T

Understanding how species richness is distributed across landscapes and which variables may be used as pre-
dictors is important for spatially targeting management interventions. This study uses finely resolved data over a
large geographical area to explore relationships between land-use intensity, habitat heterogeneity and species
richness of multiple taxa. It aims to identify surrogate landscape metrics, valid for a range of taxa, which can be
used to map and monitor High Nature Value farmland (HNV).

Results show that variation in species richness is distributed along two axes: land-use intensity and habitat
heterogeneity. At low intensity land-use, species rich groups include wetland plants, plant habitat indicators,
upland birds and rare invertebrates, whilst richness of other species groups (farmland birds, butterflies, bees)
was associated with higher land-use intensity. Habitat heterogeneity (broadleaved woodland connectivity,
hedgerows, habitat diversity) was positively related to species richness of many taxa, both generalists (plants,
butterflies, bees) and specialists (rare birds, woodland birds, plants, butterflies).

The results were used to create maps of HNV farmland. The proportion of semi-natural vegetation is a useful
metric for identifying HNV type 1. HNV type 2 (defined as a mosaic of low-intensity habitats and structural
elements) is more difficult to predict from surrogate variables, due to complex relationships between biodi-
versity and habitat heterogeneity and inadequacies of current remotely sensed data.

This approach, using fine-scaled field survey data collected at regular intervals, in conjunction with remotely
sensed data offers potential for extrapolating modelled results nationally, and importantly, can be used to assess
change over time.

1. Introduction

Agriculture has been a major driver of global environmental change
and unprecedented biodiversity loss over the past century (Benton,
Vickery, & Wilson, 2003; Firbank, Petit, Smart, Blain, & Fuller, 2008;
Strohbach, Kohler, Dauberb, & Klimek, 2015). Agricultural in-
tensification involves increases in external inputs (pesticide and ferti-
lisers), land-use change, increases in field sizes and fragmentation and
loss of semi-natural habitats; all of these have caused the decline of
many different taxa (Billeter et al., 2008; Chamberlain, Wilson, Brown,

& Vickery, 2001; Robinson & Sutherland, 2002). However, agriculture
is important for food production; croplands and pastures cover 40% of
the global land surface (Foley et al., 2005) and many species are de-
pendent upon agricultural habitats (Benton et al., 2003). Therefore,
biodiversity protection globally depends upon conservation in these
human-dominated landscapes (Fahrig et al., 2011; Karp et al., 2012).

Evidence suggests that biodiversity can be increased by changing to
low intensity land uses (Bignal & McCracken, 1996; Karp et al., 2012)
or by changing landscape structure, e.g. increasing landscape hetero-
geneity and connectivity (Stein, Gerstner, & Kreft, 2014; Benton et al.,
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2003; Steffan-Dewenter, 2003). It may be more difficult to take land out
of production because of farmer livelihoods and requirements for food
(Fahrig et al., 2011). However, where agriculture depends on structural
support payments, reductions in these could drive abandonment on
marginal land (Renwick et al., 2013). Low intensity systems, for in-
stance, semi-open habitats maintained through extensive grazing, are
important for many priority species (Lubos Halada, Evans, Roma, &
Petersen, 2011; Woodhouse, Good, Lovett, Fuller, & Dolman, 2005).

Landscape heterogeneity can moderate the negative effects of local
land-use intensity (Perović et al., 2015). Increased compositional het-
erogeneity (diversity of habitat types) represents more niches which
support more species, whilst configurational heterogeneity (number,
size and arrangement of habitat patches) (Fahrig et al., 2011; Perović
et al., 2015) increases the variability of microclimatic conditions and
provides breeding sites (Stein et al., 2014; Benton et al., 2003), whilst
increasing the ease with which species can move through the landscape
and achieve viable metapopulations (Lawton et al., 2010). However,
high habitat heterogeneity can have negative effects by increasing ha-
bitat fragmentation, at the expense of habitat specialists (Fahrig et al.,
2011).

Agricultural landscapes vary widely in the degree of intensity of
production and spatial heterogeneity, and by land ownership, historical
and cultural practices, topography and soil type (Fahrig et al., 2011). To
protect and maintain farmland biodiversity requires a framework for
priority-setting. In Europe, the High Nature Value (HNV) farmland
concept was introduced as ‘areas in Europe where agriculture is a major
(usually the dominant) land use and … supports or is associated with either
a high species and habitat diversity, the presence of species of European
concern or both’ (Andersen et al., 2003). Thus ‘the preservation and
development of HNV farming systems’ is a strategic priority for EU
member states and contributes to targets for halting biodiversity loss by
2020, so subsidies are prioritised to HNV areas (Brunbjerg et al., 2016).
These tend to be marginal for farming with low productivity. They
produce multiple ecosystem services such as carbon storage, clean
water, and aesthetic landscapes.

Three HNV types are broadly recognised (Paracchini et al., 2008):
Type 1-farmland with a high proportion of semi-natural vegetation;
Type 2-farmland with a mosaic of low intensity agriculture and natural
and structural elements, e.g. field margins, hedgerows, scrub, small
rivers; Type 3- farmland supporting rare species or a high proportion of
European or world populations (can occur at small scales in an other-
wise intensively managed landscape).

The assumptions underlying the HNV types 1 and 2 definitions, that
high species richness is associated with high habitat heterogeneity and
low intensity land-use, are evidence-based (Stein et al., 2014); however,
they have not been tested in all physical and cultural contexts and all
scales of interest. To create a national HNV indicator, it is important to
test these assumptions and to develop an understanding of fundamental
ecological relationships, incorporating species diversity, to identify
HNV areas. Species are sensitive to spatial and temporal scale, e.g.
species with small area requirements can persist in highly fragmented
habitat patches in agricultural landscapes too small to maintain species
with larger ranges. Further, species have different functional traits
(Perović et al., 2015) that influence responses to heterogeneity and
drivers (e.g. land management, nutrient input). So, although there are
studies that have used a single taxa as an indicator, biodiversity should
be measured for a range of taxa (Fahrig et al., 2011), as a single species
may not be a good predictor of other species groups (Billeter et al.,
2008; Firbank et al., 2008).

HNV farming is the only Common Agricultural Policy (CAP) impact
indicator for which there is no common methodology explicitly pro-
vided at the European union (EU) level. Each Member State uses data
and methodologies suited to their prevailing bio-physical character-
istics and farming systems, and based on the highest quality and most
appropriate data available, including for instance, landscape elements
(hedgerows) and indicator species (particularly birds and plants)

(Klimek, Lohss, & Gabriel, 2014; Morelli, Jerzak, & Tryjanowski, 2014;
Brunbjerg et al., 2016).

There have been attempts to create a system for identifying HNV
farmland consistently across Europe using various approaches, in-
cluding land cover, farming system, protected areas and species
(Andersen et al., 2003; Beaufoy, Baldock, & Clarke, 1994). Most Eur-
opean-scale approaches lack the spatial and temporal resolution ne-
cessary for national and regional application (Lomba et al., 2014).

Even at national and regional scales it can be difficult to obtain data
at high resolution on landscape elements, farming intensity, manage-
ment practices (Strohbach et al., 2015) and biodiversity. Coarser, spa-
tially continuous, remotely sensed data may be available but do not
provide the detail of finely resolved data (Wood et al., 2018), for in-
stance, small biotopes and hedgerows cannot be easily detected by re-
mote sensing, and data are not necessarily available at the appropriate
frequency to monitor change. Where biodiversity data are available
they are often sampled data such as the bird surveys carried out for
common bird monitoring in the UK (Harris et al., 2018) which cover
selected sites but make it difficult to produce continuous maps
(Strohbach et al., 2015).

Here, we develop methods to integrate fine-scaled, sampled data
(for biodiversity, landscape heterogeneity and structure) with coarser,
spatially continuous data from remote sensing (Boyle, Hayes, Gormally,
Sullivan, & Moran, 2015; Klimek et al., 2014) to enable extrapolation
outside of the sampled sites. This study is at a national scale (Wales)
and uses data collected as part of the monitoring project (GMEP; Glastir
Monitoring and Evaluation Project) designed to detect the impacts of
the Glastir agri-environment scheme (the main scheme by which the
Welsh Government pays for environmental goods and services funded
by the EU's Rural Development Programme (RDP).

This study: i) explores the relationships between elements of land-
use intensity, habitat heterogeneity and species diversity (using a range
of taxa) to support the use of metrics to identify HNV types 1 and 2; ii)
uses the results of those analyses to identify key explanatory variables
that could be used to scale up nationally from fine-scaled analysis of
field survey samples and iii) maps High Nature Value farmland in
Wales.

2. Materials and methods

2.1. HNV indicator

The development of an HNV indicator was discussed in a con-
sultation process with a range of partners and stakeholders in Wales
comprising the Centre for Ecology & Hydrology (CEH), British Trust for
Ornithology (BTO), Royal Society for the Protection of Birds (RSPB),
National Farmers Union (NFU), Natural Resources Wales (NRW) and
the Welsh Government (WG). The consultation considered the concept
of HNV, definitions, criteria and which metrics were of primary interest
to the community and for which there were relevant data. We chose not
to make the assumption that certain types of farming system are au-
tomatically of High Nature Value. Instead we used more objective,
quantitative methods suited to the prevailing bio-physical character-
istics of the area. The definition of farmed land used is quite broad, it
includes arable, improved and neutral grasslands and semi-natural
habitats (e.g. acid grassland, bog, heath) that are grazed. It excludes
urban, coniferous forest and large areas of woodland (although we have
considered broadleaved woodland connectivity). A large extent of
Wales was considered to be farmed land although it is not farmed in-
tensively.

2.2. Fine-scaled data

To explore these relationships, we used data from the Glastir
Monitoring and Evaluation programme (GMEP). The methodology is
based on that of Countryside Survey (Smart et al., 2003; Norton et al.,
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2012), with some methodological differences (Emmett and the GMEP
team, 2014). Over 4 years, 300 x 1 km squares were sampled, half of
these were based on a stratified random sample by land class (e.g.
geology and soils), and the other half a random sample weighted to-
wards Welsh government priorities for options within Glastir. Within
each 1 km squares, a series of measurements were taken. The metrics
used are outlined in Table 1.

2.2.1. Biodiversity
2.2.1.1. Plant species. A series of up to 50 vegetation plots sampling
different features were located within each 1 km squares (Smart et al.,
2003). Linear features (watercourses, hedges and field boundaries) and
areal features (fields, unenclosed land and small semi-natural biotope
patches) were sampled. Linear plots were 1m×10m laid out along a
feature. Area plots were randomly placed (2m×2m), while a series of
targeted plots sample small habitat patches and habitats of conservation
value. In each vegetation plot, a list was made of all vascular plants and
the more easily identifiable bryophytes. Response variables calculated
from the vegetation plot data for each 1 km squares include: mean
number of total plant species per plot, mean number of ancient
woodland indicator species per plot (Kimberley, Kirby, Whyatt,
Blackburn, & Smart, 2013), mean number of wetland species per plot
and mean number of species indicating high quality habitats. The latter
was created from a list of plant indicator species taken from the
Common Standards Monitoring guidance for Sites of Special Scientific
Interest (JNCC, n.d) and refined in consultation with the Botanical
Society of the British Isles from a list of axiophytes (‘worthy’ plants
indicative of habitats of high conservation value). The mean number of
wetland species per plot was calculated using this list for wetland
habitats only. The ancient woodland indicators were identified in a
separate list collated from discussions with woodland experts.

2.2.1.2. Birds. The bird surveys were carried out by BTO. The survey
protocol operated at the same spatial scale (1 km squares) as the
national BTO/JNCC/RSPB Breeding Bird Survey (BBS), but involved
more intensive fieldwork in space and time (Emmett and the GMEP
team, 2014). The surveys consisted of four visits to each square, equally
spaced through mid-March to mid-July. On each visit, the surveyor
walked a route that passed within 50m of all parts of the survey square
to which access had been secured, taking up to 5 h. All birds seen or
heard were recorded on high-resolution field maps using standard BTO
activity codes. Bird data were summarised to calculate the number of

woodland bird species in a 1 km survey square (species-specific maxima
across all four visits), and the same for farmland birds, upland birds and
rare birds. There are defined species and habitats of principal
importance to conservation in Wales that are known as ‘Priority’ or
Section 7 species and habitats (Wales Environment act) and the rare
birds are taken from that list (A1). The woodland bird index and the
farmland bird index are well-established for reporting at national level
in the UK and mainland Europe (Gregory et al., 2008).

2.2.1.3. Pollinators. Butterfly Conservation organised the survey of
pollinators focused on three main pollinator groups: butterflies
(Lepidoptera: Rhopalocera), bees (Hymenoptera: Apoidea) and hoverflies
(Diptera: Syrphidae). Butterflies were recorded to species level, whilst
bees and hoverflies were recorded as groups (A2) based on broad
differences in morphological features associated with ecological
differences. Shannon diversity indices were calculated using the
number of bee and hoverfly groups recorded, to account for evenness.
A 2 km transect route was taken through each 1 km square survey
(following the UK Butterfly Monitoring Scheme, Brereton,
Cruickshanks, Risely, Noble, & Roy, 2011), all butterflies within a
5m box are recorded while walking a fixed route at a steady pace under
a set of pre-determined weather conditions and at a set time of day
(known as ‘Pollard walks’, Pollard, 1977). Hoverfly and bee groups
were also counted simultaneously along the same transects. Pollinator
metrics used in this analysis include bee species diversity index,
hoverfly diversity index, butterfly species richness, woodland
butterfly species richness and species richness of rare invertebrates
(Section 7, Wales Environment act, n.d).

2.2.2. Habitat heterogeneity
2.2.2.1. Habitat diversity. Habitat areas (> 20m×20m) were mapped
and classified in the GMEP field survey onto hand held computers using
the Broad and Priority Habitat classification (Jackson, 2000). Shannon's
diversity index was calculated to take into account the number of Broad
habitats and the dominance among them (Firbank et al., 2008).

2.2.2.2. Habitat patch size. Mean area of habitat per 1 km squares was
calculated from field survey mapping data.

2.2.2.3. Linear features. Linear features (< 5m wide, minimum length
20m) recorded include the length of managed hedgerows, unmanaged
lines of trees, streams and ditches in each 1 km square.

Table 1
Variables used in analysis.

Diversity metrics Habitat structure metrics (Fine-scaled analysis) Habitat structure metrics used for All Wales analysis
(significant variables from previous analysis)

Plants Total species richness (Mean per plot
per 1 km)

Habitat
heterogeneity

Habitat diversity (Shannon
index)

Habitat
heterogeneity

Habitat diversity (Shannon index)
LCM (Land Cover Map)

Ancient woodland indicator species
(Mean per plot per 1 km)

Habitat patch size (mean area of
habitat in 1 km)

Wetland indicators (Mean per plot
per 1 km)

Wetland connectivity Wetland connectivity LCM

Plant habitat indicators (mean per
plot per 1 km)

Broadleaved woodland
connectivity

Broadleaved woodland connectivity
LCM and NFI

Pollinators Butterfly species richness Length of hedgerows Woody linear feature density
Woodland Butterfly species richness Length of lines of trees
Bee diversity Total length of Inland water

(streams and rivers)Hoverfly diversity
rare invertebrate species richness Land-use intensity % semi-natural habitat Land-use intensity % semi-natural habitat in 1 km LCM

Birds Woodland bird species richness % Improved land % Improved land in 1 km LCM
Farmland bird species richness Sward height
Rare bird species richness Total number sheep

Total number pigs
Upland bird species richness Total number horses

Soils % rare and occasional soils

Soil diversity
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2.2.2.4. Connectivity of woodlands and wetlands. Habitat connectivity is
a function of the number and size of habitat patches and how close
together they are; this was estimated from the habitat maps recorded by
the field survey team. We considered Euclidean distance (distance in
metres between the edges of each habitat patch) and least-cost
methods, and used least-cost for fine-scaled data. Least-cost paths
were calculated as a function of the landscape occurring between two
habitat patches, using expert judgement of the ease of movement of a
generic broadleaf woodland or wetland species to assign weightings to
each habitat (Jackson et al., 2013). Linear features containing woody
components were included with the assumption that species associated
with broadleaf woodland could move along linear features as easily as
they could move within woodland.

The Probability of Connectivity (PC) metric was calculated, using
the Conefor program (Saura & Torné, 2009), between all broadleaf
woodland patches to measure woodland connectivity and between all
wetland patches for wetland connectivity. The model was para-
meterised with a dispersal distance of 200m. This was scaled so that the
square with the highest PC metric had a value of 1.

2.2.3. Land-use intensity
The proportion of improved land (improved grassland and arable)

was calculated from the habitat maps recorded by the field teams. Semi-
natural land was defined as all Broad Habitat types excluding improved
grassland, arable and horticultural, coniferous woodland and urban.
The sward height of all appropriate land cover types was recorded by
surveyors and the mean sward height per square averaged over the
number of land parcels was calculated. Data on livestock from the June
Agricultural census at holding (farm) scale were provided by the Welsh
government. These data were overlaid onto the field survey squares and
the total number of pigs, sheep and horses per 1 km squares were cal-
culated as metrics.

2.2.4. Soils
The soils of Wales are mapped as part of the soil survey of England

and Wales (Avery, 1980). The National Soil Map (NATMAP) for Wales
is available at reconnaissance scale (soil associations), 1:250,000 for all
of Wales (NSRI, 2001). Maxwell et al. (2017) used 98 soil associations
taken from the soil survey of England and Wales in an analysis to
identify rare soils and to assess spatial patterns (soil diversity) across
Wales and these data were used here. Soil diversity is measured using
the Shannon diversity indices similarly to the calculation for habitat
diversity (Maxwell et al., 2017).

2.2.5. Fine-scaled analysis
Generalised Additive Modelling (GAM) (Hastie & Tibishirani, 1990)

in R (R core team, 2017) was used (with a Poisson distribution) to
analyse interactions between species richness of biodiversity indicators
and explanatory variables (Table 1). Spatial autocorrelation (SAC) was
tested by extracting the model residuals and testing with Moran's I in R
(using functions in the ‘ape’ library) (Dormann et al., 2007). Results
suggested that there was SAC for some variables (birds, butterflies,
bees: p < 0.001), so we accounted for SAC by specifying a spatially
explicit model for the residual structure with the nlme package, which
provides functions for spatial correlation structures (Dormann et al.,
2007).

Multivariate analyses of the spatial relationships between biodi-
versity metrics and explanatory variables were undertaken using
Canoco (Ter Braak & Smilauer, 2002). Data were collated at the 1 km
squares resolution and all biodiversity variables per square were
centred and standardised to zero mean and unit variance. The stan-
dardised response data result in all variables having the same centred
standard deviation; hence, Redundancy Analysis (RDA) -a linear model-
is appropriate to test the explanatory power of independent predictors
of habitat diversity and spatial heterogeneity. Significant predictors
were identified using Monte Carlo permutation tests (Leps & Smilauer,

2003).

2.3. National data; all 1 km squares in Wales

To scale up from the fine-scaled analysis of sample field survey
squares requires data for every 1 km square in Wales. Using the sig-
nificant explanatory variables identified in the RDA analysis above, the
analysis was repeated using data from sources available at the national
scale. The Land Cover Map 2007 (LCM2007; Morton et al., 2011) was
used for some metrics: it is a vector based land cover map for the UK
based on a spatial framework that uses national cartography products
(OS MasterMap for Great Britain). LCM2007 was derived by classifying
30m pixel size satellite data, with 23 classes based on Broad Habitats
and validated against ground reference polygons distributed across the
UK (Morton et al., 2011).

2.3.1. Habitat heterogeneity
2.3.1.1. Habitat diversity. Habitat diversity was calculated using the
method described above but using the LCM2007 Broad Habitat classes
rather than Field Survey data.

2.3.1.2. Woody linear features. The percentage cover of woody
vegetation was calculated using airborne radar data (NEXTMap®),
optical imagery from satellites and data from the National Forest
Inventory. NextMap provides canopy height information at 5m×5m
spatial resolution and this dataset was used to identify ‘tall’ features in
the landscape. Normalised Difference Vegetation Index (NDVI) imagery
was used to separate vegetated from non-vegetated areas. NDVI was
derived using data from the Landsat 8 Operational Land Imager (OLI),
calibrated to reflectance and masked to remove cloud and cloud
shadow. NDVI was calculated using:

=
−

+

NDVI
Near infrared reflectance Red reflectance
Near infrared reflectance Red reflectance

( )
( )

Larger areas of woodland were supplemented by the National Forest
Inventory 2013 dataset to produce a woody features product with a
binary (woody/non-woody) classification at 5×5m spatial resolution
(Tebbs & Rowland, 2014).

2.3.1.3. Connectivity. Wales was divided into ~20,000 1 km squares for
which area and location of broadleaf woodland and wetland were
assessed from LCM. Within the GMEP field survey squares the least-cost
connectivity metric was compared to the Euclidean distance metric and
there was a high significant correlation (r squared=0.95, p < 0.001)
so, for the all Wales dataset, Euclidean distances were used to reduce
processing time. The pairwise distances and size of each fragment were
used to calculate the probability of connectivity metric for each 1 km
grid cell using Conefor software (Saura & Torné, 2009), as for the field
data.

2.3.2. Land-use intensity
The percentages of semi-natural and improved land were calculated

in the same way as above but using remotely-sensed LCM2007 data
rather than field survey data.

2.3.3. National analysis
To compare the use of explanatory variables from fine-scaled field

data with remotely sensed data, an RDA with the fine-scaled field
survey biodiversity data as response variables, habitat heterogeneity,
land-use intensity and soils (Table 1) as explanatory and the remotely
sensed data as supplementary variables, was performed in CANOCO
(Ter Braak & Smilauer, 2002). This analysis was for field survey squares
only. Supplementary variables are added on the ordination diagram
without influencing the positioning of the sites (scores), which are
constrained by the explanatory variables alone (Fig. A2).
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RDA including all squares in Wales was carried out in R (R core
team, 2017; Oksanen et al., 2017) to enable the use of large datasets. To
test the predictive power of the multi-variate analysis, an RDA was
carried out with data from the first three years only (2013–2015, 225
1 km squares), using biodiversity metrics from the field survey as re-
sponse variables and remotely-sensed habitat heterogeneity and land-
use intensity data as explanatory variables. Data for all other non-GMEP
squares in Wales were passively added to the ordination space using the
remotely sensed explanatory variables only. Site scores for year 4 sites
(75 squares) based on passively adding them using remotely sensed
explanatory variables were extracted. Then the RDA described above
was repeated including year 4 field data (2013–2016, 300 squares). Site
scores for year 4 squares (75) were extracted from the results of this
analysis and compared to the scores extracted from the previous ordi-
nation to validate the analysis.

Finally, the axis scores from the RDA of all field survey squares
(300), with biodiversity response data and remotely sensed explanatory
variables and all non-GMEP squares in Wales, passively added to the
ordination space, were used to map the extent of HNV land in Wales.

3. Results

3.1. Fine-scaled analysis

3.1.1. Generalised Additive Models (GAM's)
The results of analyses of explanatory variables against species

richness can be seen in Table 2 and supplementary Fig. A3a–A3e, where
the GAM curve has been superimposed onto the raw data. There were
no significant relationships with hoverflies. Adding a spatially explicit
model to account for SAC did not affect many of the results. Bees were
the group most influenced and some results were no longer significant
when SAC was accounted for.

The proportion of semi-natural habitat was positively associated
with plant habitat quality indicators, wetland specialist plants, rare
invertebrates and upland birds. It was negatively related to butterflies,
bees, total plant species richness, woodland butterflies and farmland
birds. There were non-linear, unimodal relationships with ancient
woodland plants, rare birds and woodland birds (Fig. A3a). There were
inverse relationships with the proportion of improved land (Fig. A3b):
for example, there were negative relationships for plant habitat in-
dicators, wetland specialist plants, rare invertebrates, and upland birds.

Habitat diversity (Fig. A3c) was positively, linearly, related to total
plant species richness, woodland birds and rare birds and unimodally to
bees. There were no significant relationships with the other biodiversity
indicators.

There were positive relationships with broadleaved woodland

connectivity (Fig. A3d), for both generalists (butterflies) and specialists
(woodland butterflies, birds & plants (slightly u-shaped) and rare birds).
Rare invertebrates, upland birds and wetland and plant habitat in-
dicators were negatively related to broadleaved connectivity. Farmland
birds and total plant species richness were non-linearly (unimodally)
related. There was no significant relationship with bees. The relation-
ships between biodiversity and hedgerow length (Fig. A3e) were quite
similar to broadleaved connectivity; the only differences were that total
plant species richness, woodland plants and farmland birds were line-
arly positively related, rather than unimodal, and wetland indicator
plants were not significantly related to hedgerows.

3.1.2. Multivariate analysis
The results of the multi-variate RDA analysis are shown in Fig. 1a.

axis 1 and 2 explained 20% and 2.7% of the variation, respectively. Axis
3 (Fig. A1) explained 2.3% of the variation. There is a clear gradient
between low intensity land-use (high proportion of semi-natural land -
HNV type 1) and high intensity land-use (high proportion of improved
land) which appears to roughly equate to Axis 1, with significant re-
lationships to particular species groups. The other gradient appears to
relate to habitat heterogeneity (bottom left to top right) with increasing
habitat diversity, broadleaved connectivity, hedgerows and lines of
trees on Axis 2. This aligns with HNV type 2. The discrimination of
types 1 and 2 HNV was carried out by separately bisecting each of these
principal gradients. Since all 1 km squares have a score on each axis, the
result is a subset of squares that have the overlapping attributes of both
type 1 and type 2 HNV. Thus the two types are not defined to be mu-
tually exclusive when mapped across Wales.

In the analysis, the following variables were statistically significant
(using Monte Carlo permutation tests to test the significance of re-
gression) as predictors of biodiversity: broadleaved connectivity
(F= 22.4, p < 0.001), % improved land (F= 3.2, p < 0.01), % semi-
natural habitat (F= 33.3, p < 0.001), wetland connectivity (F= 6.5,
p < 0.001), habitat diversity (F= 4.6, p < 0.01), hedgerow length
(F=5.7, p < 0.01), lines of trees (F= 10.7 p < 0.001) and inland
water (F= 4.4, p < 0.01). The proportion of rare and occasional soils,
soil diversity, the stocking density of sheep, pigs, horses, patch size and
sward height were not statistically significant. Significant variables
have been included on the ordination diagram (Fig. 1a).

The ordination diagram indicates that (as with the GAMs) a high
proportion of semi-natural land was associated with species richness of
plant habitat quality indicators, upland birds, wetland plants and rare
invertebrates along with wetland connectivity. Broadleaved woodland
connectivity was strongly associated with woodland birds, woodland
plants, rare birds and total plant species richness. Hedgerow length was
positively associated with farmland birds, woodland butterflies, total

Table 2
Results from GAM's (Poisson distribution) from fine-scaled field data, including spatially explicit model for residual structure; species richness as response variable
against explanatory variables. (Dir= direction of relationship, + positive, − negative, ∩ unimodal, U u-shaped. ns= not significant. * p < 0.05, **p < 0.01,
***p < 0.001).

Broadleaved connectivity Hedgerow length Habitat diversity % semi-natural % Improved land

F Dir F Dir F Dir F Dir F Dir

Total Plant species richness 7.2⁎⁎⁎ ∩ 20.5*** + 4.3* + 7.8*** − 16.2*** ∩
Ancient woodland indicator plants 9.9*** ∩ 11.9*** + ns 4.1** ∩ ns
Plant Habitat indicators 4.3* −/U 21.4*** − ns 24.3*** + 58.5*** −
Wetland plants 18.6*** − ns ns 9.9*** + ns
Butterflies 16.7*** + 30.8*** + ns 46*** − 47.6*** +
Rare invertebrates 12.5*** − 13.9*** − ns 22.7*** + 18.4*** −
Bees ns ns 6.6*** ∩ 9.5** − ns
Woodland Butterflies 10.8*** + 11.11*** + ns 12*** − 5.9*** +
Hoverflies ns ns ns ns ns
Rare birds 93.7*** + 34.6*** + 22.8*** + 101.4*** ∩ 71.3*** ∩
Farmland birds 9.4*** ∩ 17.4*** + ns 18.2*** − 41.5*** +
Upland birds 3.9* − 12.8*** − ns 18.3*** + 11.4*** −
Woodland birds 97.7*** + 17.6*** + 15.9*** + 59.8*** ∩ 28.9*** ∩
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butterflies and bees. Habitat diversity was strongly associated with
woodland birds, rare birds and total plant species richness.

The association of explanatory variables and response variables
enables classification into four quadrants that describe the types of
1 km squares that were found in the data (Fig. 1b). The types of square
are represented using example 1 km square habitat maps from the field
survey.

3.2. National analysis based on remotely-sensed data

The results of repeating the ordination of GMEP field data, including
explanatory variables from remotely-sensed data, can be seen in Fig.
A2. There were similar relationships with biodiversity variables re-
gardless of whether they were derived data from field survey or remote
sensing.

Fig. 2 shows the results of testing the prediction of axes scores from
a subset of squares using two different methods (with biodiversity data
and when passively added to the ordination using only explanatory
variables). Fig. 2a shows a highly significant relationship between site
scores on axis 1 (land-use intensity). The result for axis 2 (Fig. 2b) is not
significant.

Axis site scores from the all Wales analysis have been extracted and
categorised (based on the 20th percentile, commonly used to identify
upper and lower proportions of distributions whilst not solely identi-
fying the extremes) into ‘High’ (top 20 percentile), ‘medium’ (middle 60
percentile) and ‘low’ (lowest 20 percentile). These have been mapped
across Wales (Fig. 3), to signify the distribution of Type 1 (% semi-
natural vegetation) and Type 2 (habitat heterogeneity) HNV farmland.
Fig. A4 shows boxplots of the distribution of the ordination axis scores
across the categorised HNV classes. The maps suggest that
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Fig. 1. a.) Ordination results from RDA b.) simplified version of ordination diagram with Habitat maps from 1 km squares to demonstrate different types of
heterogeneity and land-use intensity. Top left: Low Intensity land-use/high habitat heterogeneity; top right: High Intensity land-use/high habitat heterogeneity;
bottom left: low intensity land-use/low habitat heterogeneity; bottom right: high intensity land-use/low habitat heterogeneity.

Fig. 2. Test of analysis for 75 1 km squares from year 4, comparing results from RDA where survey squares were added passively using remotely sensed environ-
mental variables only with results from an RDA including field survey biodiversity data. a.) axis 1: land-use intensity b.) axis 2: habitat heterogeneity.
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approximately 35% of the land in Wales is in the upper percentile for
HNV Types 1 and 2 combined.

4. Discussion

Conservation of farmland is important for mitigating biodiversity
decline (Kleijn, Rundlöf, Scheper, Smith, & Tscharntke, 2011). Identi-
fying areas of High Nature Value spatially enables targeting of con-
servation actions and farming subsidies (Klimek et al., 2014). In this
study, land-use intensity and habitat heterogeneity were clearly iden-
tified as two major gradients acting upon species diversity in Wales at
the spatial scale of 1 km. They also form the criteria for classification of
HNV farmland. Our results therefore provide a uniquely detailed and
large-scale test that supports the two hypothesised relationships that
define Types 1 and 2 HNV.

4.1. Relationships between land use intensity and biodiversity

In Wales, there are large areas of semi-natural, extensively grazed
land composed of heathland, semi-natural grassland, bog and purple
moor grass rush pasture (Blackstock, Howe, Stevens, Burrows, & Jones,
2010) and ffridd (a transitional habitat of unimproved grassland, shrub
heath, bracken and scrub; Woodhouse et al., 2005) and these areas are
important in a European context (Russell et al., 2011). They are asso-
ciated with many habitat-specialist species and are valued for their
aesthetic, cultural and functional importance (Vickery et al., 2001).
This includes upland birds, rare invertebrate species, plants indicative
of high conservation value habitats and wetland plants (all of which
were significant in this study). It might have been expected that but-
terflies would be positively related to semi-natural habitat (a number of
habitat specialists are only found in such habitats). However, this was
not the case. Pollinator surveys were conducted in July and August to
coincide with peak butterfly abundance, this is after the main flight
period of some Welsh habitat specialists. Also, most habitat specialist
butterflies that fly during the survey period have restricted ranges in
Wales (e.g. High Brown Fritillary, Argynnis adippe).

Higher land-use intensity was associated with farmland birds, bees
and butterflies, reflecting positive responses of farmland-associated
species to a degree of active management. Also, higher land-use in-
tensity tends to be in lowland environments, which have a more benign
climate, associated with greater numbers of species. Wales is not as
intensively farmed as some countries: there are no large areas of arable,
field size is not large and there are often hedgerows and linear habitats,

which may explain why species richness among these groups is not
lower at higher intensity. In an analysis of all of Great Britain, the re-
lationship between land-use intensity and species richness was unim-
odal (Maskell et al., 2013). In Wales, land-use intensity is low to
medium in comparison to the UK as a whole so it sits on the left and
middle of centre of the unimodal curve rather than to the right.

4.2. Relationships between habitat heterogeneity and biodiversity

Habitat heterogeneity is a desirable cultural landscape quality
(Swetnam, Harrison-Curran, & Smith, 2017), regardless of benefits for
species diversity. However, both compositional and configurational
heterogeneity are positively related to many taxa in landscapes in
Wales: habitat specialists (woodland birds, butterflies and plants, rare
birds, farmland birds) and generalists (plants, bees and butterflies).
There is supporting evidence from the literature: species groups differ
in response to environmental heterogeneity (Fahrig et al., 2011). Bees
require several different and sometimes also very specific habitat types
to persist in a landscape (Billeter et al., 2008). The diversity of but-
terflies has been shown to be related to small-scale habitat hetero-
geneity (Weibull, Bengtsson, & Nohlgren, 2000). Habitat diversity en-
ables source populations in semi-natural elements to spill over to
intensively managed fields (Holland & Fahrig, 2000; Smart et al.,
2006). Bird species' preferences vary, both with respect to the scale of
the heterogeneity and responses to specific levels of heterogeneity (Aue,
Diekötter, Gottschalk, Wolters, & Hotes, 2014; Siriwardena, Cooke, &
Sutherland, 2012; Pickett & Siriwardena, 2011). There is evidence that
bird taxonomic and functional diversity can increase within HNV
farmland in relation to land-use composition and increased configura-
tional heterogeneity (Morelli, 2018).

Woodland varies in extent, condition and distribution across the
Welsh landscape (Russell et al., 2011). Where woodland patches have
contracted or become isolated, connectivity of woody linear features is
important to maintain viable populations of many taxa. Hedgerows,
whilst not providing all of the conditions for woodland habitat spe-
cialists, can provide some of the required conditions needed, e.g. for
shelter, food, microclimate and soil. Hedgerow habitat and woody
structures in open landscapes significantly increase the number of bird
species, by increasing ecological niches, particularly benefiting gen-
eralist woodland birds (Aue et al., 2014; Hinsley & Bellamy, 2000;
Morelli et al., 2014). Some species, e.g. skylark and lapwing, are ne-
gatively influenced by hedgerows (Hinsley & Bellamy, 2000). In this
study, there were positive relationships between hedgerows and rare,

Fig. 3. Maps of High Nature Value farmland in Wales a.) Type 1 land-use intensity (percentage of semi-natural land) and b.) Type 2 Habitat heterogeneity.
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woodland and farmland birds.

4.3. Estimating the area of High Nature Value farmland

Indicators specifying the amount of land under High Nature Value
farming in Wales and how it changes over a specified time period
(context and impact) are important. Any methodology needs to be
spatially precise and sufficiently frequent to detect change (Lomba
et al., 2014). It has been possible in some countries to collate the ‘best’
data available to map HNV farmland as a one-off, but it may not be
practicable to repeat this at regular intervals.

In this study, we propose using disaggregated fine-scaled data to
build models that can include remotely sensed data to provide con-
tinuous coverage (Klimek et al., 2014; Boyle et al., 2015). The surveys
for data collection can be repeated over set time periods to analyse
change. When remotely sensed explanatory variables were jointly
analysed alongside field survey data there was a high degree of corre-
lation between them suggesting that there is potential to use remotely
sensed data as a surrogate for field survey.

Applying this process will be helped by the large volumes of freely
available, medium resolution (< 30m pixel size) satellite data provided
by Landsat-8 and Sentinels 1 and 2. These data will lead to more fre-
quent production and updating of EO products, for example the UK
Land Cover Map is moving to a three-year repeat cycle, from an ap-
proximately 10 year repeat cycle. The increase in the availability of
high resolution data from Sentinel-1 and Sentinel-2 is also leading to a
wider range of routinely-derived EO-products for the UK, including
vegetation productivity (Tebbs, Rowland, Smart, Maskell, & Norton,
2017). Developments such as these are likely to increase our ability to
map HNV and changes in HNV in the future.

The testing of the method in the validation analysis demonstrated
that the percentage of semi-natural/improved land was a very useful
metric for identifying HNV type 1 farmland. However, for habitat
heterogeneity and HNV type 2 farmland, although the initial RDA
analysis identified some interesting patterns in the species data, the
analysis using only remotely sensed explanatory variables to add
squares passively did not predict the species richness of the survey
squares as well. This may be because multiple explanatory variables
were used, rather than one simple indicator, and because of complex
relationships between biodiversity and habitat heterogeneity.

There are issues with remotely sensed data. Although some habitats
can be identified fairly accurately from satellites, e.g. woodland, other
habitats (e.g. grasslands, bogs and heath) cannot be classified accu-
rately (Morton et al., 2011; Wood et al., 2018). Vegetation structure can
also be difficult to capture remotely: small biotopes (< 20m) which
particularly in intensive landscapes may contain valuable biodiversity,
will often be below the minimum mappable size of products derived
from satellite data (Wood et al., 2018). This may impact on measures
such as habitat diversity. Rhodes, Henrys, Siriwardena, Whittingham,
and Norton (2015) found that high-resolution field data generated more
reliable models of predicted local population responses to land-use
change than lower resolution, remotely sensed data. Further finely
scaled analysis at a field level and improvements in remotely sensed
data may be necessary to clarify these relationships and to increase
explanatory power of the models (Klimek et al., 2014).

4.4. Summary

A high proportion of semi-natural land is associated with high
biodiversity of habitat specialists and species indicating areas of high
conservation value. This metric can be derived from coarse, remotely
sensed data to predict and to map High Nature Value type 1 farmland.

Habitat heterogeneity is associated with increased diversity of
generalist and specialist species groups and interesting relationships
were found between broadleaved woodland connectivity, habitat di-
versity, lengths of hedgerows/lines of trees and field survey biodiversity

data. The complexity of these relationships and the inadequacies of
current remotely sensed data make it more difficult to replace fine-
scaled analysis with simple surrogate metrics. Estimation of extent and
spatial configuration of HNV type 2 requires further work to refine the
method and to create better metrics.

The approach described here, using fine-scaled field survey data
collected consistently at frequent intervals in association with remotely
sensed data offers a great deal of potential for extrapolating modelled
results nationally and also of ensuring repeatability of the analysis to
assess change over time, and could usefully be applied to enhance the
identification and monitoring of HNV in other European countries.
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