178 research outputs found
Biogenesis of secretory granules Implications arising from the immature secretory granule in the regulated pathway of secretion
AbstractIn endocrine cells the regulated secretion of hormones, peptides, enzymes and neurotransmitters into the external medium occurs when mature secretory granules fuse with the plasma membrane. Secretory granules form at the trans-Golgi network (TGN) by envelopment of the dense-core aggregate of regulated secretory proteins by a specific membrane. The secretory granules initially formed at the TGN, referred to here as immature secretory granules, are morphologically and biochemically distinct from mature secretory granules. The functional similarities and differences between the immature secretory granule and the mature secretory granule, and the events involved in the maturation of the secretory granules are briefly discussed
The puzzling origin of the autophagosomal membrane
Autophagy is one of the newest and fastest emerging research areas in biomedical life sciences. Autophagosomes, large double-membrane vesicles enclosing cytoplasmic components targeted for degradation, are the hallmark of this catabolic pathway. The origin of the lipid bilayers composing these transport carriers has been the central enigma of the field since the discovery of autophagy. A series of recent studies has implicated several cellular organelles as the possible source of the autophagosomal membranes, if anything further clouding our view. In this compendium, we will discuss these apparently contradictory results and briefly emphasize the relevance of determining the lipid source used for autophagy for future translational research, for example in drug discovery programs
Membrane supply and remodeling during autophagosome biogenesis
The de novo generation of double-membrane autophagosomes is the hallmark of autophagy. The initial membranous precursor cisterna, the phagophore, is very likely generated by the fusion of vesicles and acts as a membrane seed for the subsequent expansion into an autophagosome. This latter step requires a massive convoy of lipids into the phagophore. In this review, we present recent advances in our understanding of the intracellular membrane sources and lipid delivery mechanisms, which principally rely on vesicular transport and membrane contact sites that contribute to autophagosome biogenesis. In this context, we discuss lipid biosynthesis and lipid remodeling events that play a crucial role in both phagophore nucleation and expansion
Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells
In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA–mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation
The Golgi as an Assembly Line to the Autophagosome
Autophagy is traditionally depicted as a signaling cascade that culminates in the formation of an autophagosome that degrades cellular cargo. However, recent studies have identified myriad pathways and cellular organelles underlying the autophagy process, be it as signaling platforms or through the contribution of proteins and lipids. The Golgi complex is recognized as being a central transport hub in the cell, with a critical role in endocytic trafficking and endoplasmic reticulum (ER) to plasma membrane (PM) transport. However, the Golgi is also an important site of key autophagy regulators, including the protein autophagy-related (ATG)-9A and the lipid, phosphatidylinositol-4-phosphate [PI(4)P]. In this review, we highlight the central function of this organelle in autophagy as a transport hub supplying various components of autophagosome formation.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 re- search and innovation programme (grant agreement No 788708) and the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001187); the UK Medical Research Council (FC001187); and the Welcome Trust (FC001187). A.R.vV. was supported by an EMBO long-term fellowship (EMBO ALTF 325-2017). J.H.H. was supported by a Postdoctoral Fellowship from the Basque Government
Autophagy coordinates chondrocyte development and early joint formation in zebrafish
Autophagy is a catabolic process responsible for the removal of waste and damaged cellular components by lysosomal degradation. It plays a key role in fundamental cell processes, including ER stress mitigation, control of cell metabolism, and cell differentiation and proliferation, all of which are essential for cartilage cell (chondrocyte) development and survival, and for the formation of cartilage. Correspondingly, autophagy dysregulation has been implicated in several skeletal disorders such as osteoarthritis and osteoporosis. To test the requirement for autophagy during skeletal development in zebrafish, we generated an atg13 CRISPR knockout zebrafish line. This line showed a complete loss of atg13 expression, and restricted autophagic activity in vivo. In the absence of autophagy, chondrocyte maturation was accelerated, with chondrocytes exhibiting signs of premature hypertrophy. Focussing on the jaw element, autophagy disruption affected joint articulation causing restricted mouth opening. This gross behavioural phenotype corresponded with a failure to thrive, and death in homozygote atg13 nulls within 17Â days. Taken together, our results are consistent with autophagy contributing to the timely regulation of chondrocyte maturation and for extracellular matrix formation
Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules
AbstractNon-hydrolysable analogues of GTP, such as GTPγS and GMP-PNP, have previously been shown to inhibit the formation of constitutive secretory vesicles (CSVs) and immature secretory granules (ISGs) from the trans-Golgi network (TGN). Using a cell-free system, we show here that the formation of these vesicles is also inhibited by [AIF4], a compound known to act on trimeric G-proteins. Addition of highly purified G-protein βγ subunits stimulated, in a differential manner, the cell-free formation of both CSVs and ISGs. ADP-ribosylation experiments revealed the presence of a pertussis toxin-sensitive G-protein α subunit in the TGN. We conclude that trimeric G-proteins regulate the formation of secretory vesicles from the TGN
Statistical issues related to dietary intake as the response variable in intervention trials.
The focus of this paper is dietary intervention trials. We explore the statistical issues involved when the response variable, intake of a food or nutrient, is based on self-report data that are subject to inherent measurement error. There has been little work on handling error in this context. A particular feature of self-reported dietary intake data is that the error may be differential by intervention group. Measurement error methods require information on the nature of the errors in the self-report data. We assume that there is a calibration sub-study in which unbiased biomarker data are available. We outline methods for handling measurement error in this setting and use theory and simulations to investigate how self-report and biomarker data may be combined to estimate the intervention effect. Methods are illustrated using data from the Trial of Nonpharmacologic Intervention in the Elderly, in which the intervention was a sodium-lowering diet and the response was sodium intake. Simulations are used to investigate the methods under differential error, differing reliability of self-reports relative to biomarkers and different proportions of individuals in the calibration sub-study. When the reliability of self-report measurements is comparable with that of the biomarker, it is advantageous to use the self-report data in addition to the biomarker to estimate the intervention effect. If, however, the reliability of the self-report data is low compared with that in the biomarker, then, there is little to be gained by using the self-report data. Our findings have important implications for the design of dietary intervention trials. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd
Prion protein conversion at two distinct cellular sites precedes fibrillisation
The self-templating nature of prions plays a central role in prion pathogenesis and is associated with infectivity and transmissibility. Since propagation of proteopathic seeds has now been acknowledged a principal pathogenic process in many types of dementia, more insight into the molecular mechanism of prion replication is vital to delineate specific and common disease pathways. By employing highly discriminatory anti-PrP antibodies and conversion-tolerant PrP chimera, we here report that de novo PrP conversion and formation of fibril-like PrP aggregates are distinct in mechanistic and kinetic terms. De novo PrP conversion occurs within minutes after infection at two subcellular locations, while fibril-like PrP aggregates are formed exclusively at the plasma membrane, hours after infection. Phenotypically distinct pools of abnormal PrP at perinuclear sites and the plasma membrane show differences in N-terminal processing, aggregation state and fibril formation and are linked by exocytic transport via synaptic and large-dense core vesicles
- …