39 research outputs found
Limits on the Network Sensitivity Function for Multi-Agent Systems on a Graph
This report explores the tradeoffs and limits of performance in feedback control of interconnected multi-agent systems, focused on the network sensitivity functions. We consider the interaction topology described by a directed graph and we prove that the sensitivity transfer functions between every pair of agents, arbitrarily connected, can be derived using a version of the Mason's Direct Rule. Explicit forms for special types of graphs are presented. An analysis of the role of cycles points out that these structures influence and limit considerably the performance of the system. The more the cycles are equally distributed among the formation, the better performance the system can achieve, but they are always worse than the single agent case. We also prove the networked version of Bode's integral formula, showing that it still holds for multi-agent systems
Selection of the key earth observation sensors and platforms focusing on applications for Polar Regions in the scope of Copernicus system 2020-2030
An optimal payload selection conducted in the frame of the H2020 ONION project (id 687490) is presented based on the ability to cover the observation needs of the Copernicus system in the time period 2020–2030. Payload selection is constrained by the variables that can be measured, the power consumption, and weight of the instrument, and the required accuracy and spatial resolution (horizontal or vertical). It involved 20 measurements with observation gaps according to the user requirements that were detected in the top 10 use cases in the scope of Copernicus space infrastructure, 9 potential applied technologies, and 39 available commercial platforms. Additional Earth Observation (EO) infrastructures are proposed to reduce measurements gaps, based on a weighting system that assigned high relevance for measurements associated to Marine for Weather Forecast over Polar Regions. This study concludes with a rank and mapping of the potential technologies and the suitable commercial platforms to cover most of the requirements of the top ten use cases, analyzing the Marine for Weather Forecast, Sea Ice Monitoring, Fishing Pressure, and Agriculture and Forestry: Hydric stress as the priority use cases.Peer ReviewedPostprint (published version
Limits on the network sensitivity function for homogeneous multi-agent systems on a graph
This paper explores some tradeoffs and limits of performance in feedback control of interconnected multi-agent systems, focused on the network sensitivity functions. We consider the interaction topology described by a directed graph and we prove that the sensitivity transfer functions between every pair of agents, arbitrarily connected, can be derived using a version of Mason's direct rule. An analysis of the role of cycles shows that these structures influence and considerably limit the behavior of the system. We also derive a networked version of Bode's integral formula, showing that it still holds for multi-agent systems
EO-ALERT: A Satellite Architecture for Autonomous Maritime Monitoring in Almost-Real-Time
This paper presents an overview of the maritime monitoring satellite architecture and results achieved by the EO-ALERT H2020 project. EO-ALERT proposes the definition and development of the next-generation Earth Observation (EO) data processing chain, based on a novel flight segment architecture that moves EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering the EO products directly to the end user with very low latency; in almost-real-time, e.g. within 1 minute. This paper presents the EO-ALERT architecture, its performance and hardware, with a focus on its application to maritime scenarios. Performances are presented for multiple reference user scenarios; autonomous ship detection, for a service similar to the EMSA VDS, and extreme weather monitoring, for wind and wave. The ground test results using EO data show that the proposed architecture can deliver maritime EO products to the end user with latency lower than one-point-five minutes, for both SAR and Optical Very High Resolution (VHR) missions, demonstrating the viability of the architecture for almost-real-time maritime monitoring
Expert clinical pharmacological advice may make an antimicrobial TDM program for emerging candidates more clinically useful in tailoring therapy of critically ill patients
Background Therapeutic drug monitoring (TDM) may represent an invaluable tool for optimizing antimicrobial therapy in septic patients, but extensive use is burdened by barriers. The aim of this study was to assess the impact of a newly established expert clinical pharmacological advice (ECPA) program in improving the clinical usefulness of an already existing TDM program for emerging candidates in tailoring antimicrobial therapy among critically ill patients. Methods This retrospective observational study included an organizational phase (OP) and an assessment phase (AP). During the OP (January-June 2021), specific actions were organized by MD clinical pharmacologists together with bioanalytical experts, clinical engineers, and ICU clinicians. During the AP (July-December 2021), the impact of these actions in optimizing antimicrobial treatment of the critically ill patients was assessed. Four indicators of performance of the TDM-guided real-time ECPA program were identified [total TDM-guided ECPAs July-December 2021/total TDM results July-December 2020; total ECPA dosing adjustments/total delivered ECPAs both at first assessment and overall; and turnaround time (TAT) of ECPAs, defined as optimal (< 12 h), quasi-optimal (12-24 h), acceptable (24-48 h), suboptimal (> 48 h)]. Results The OP allowed to implement new organizational procedures, to create a dedicated pathway in the intranet system, to offer educational webinars on clinical pharmacology of antimicrobials, and to establish a multidisciplinary team at the morning bedside ICU meeting. In the AP, a total of 640 ECPAs were provided for optimizing 261 courses of antimicrobial therapy in 166 critically ill patients. ECPAs concerned mainly piperacillin-tazobactam (41.8%) and meropenem (24.9%), and also other antimicrobials had >= 10 ECPAs (ceftazidime, ciprofloxacin, fluconazole, ganciclovir, levofloxacin, and linezolid). Overall, the pre-post-increase in TDM activity was of 13.3-fold. TDM-guided dosing adjustments were recommended at first assessment in 61.7% of ECPAs (10.7% increases and 51.0% decreases), and overall in 45.0% of ECPAs (10.0% increases and 35.0% decreases). The overall median TAT was optimal (7.7 h) and that of each single agent was always optimal or quasi-optimal. Conclusions Multidisciplinary approach and timely expert interpretation of TDM results by MD Clinical Pharmacologists could represent cornerstones in improving the cost-effectiveness of an antimicrobial TDM program for emerging TDM candidates
Microsatellite Constellation for Mars Communication and Navigation
Exploration of Mars and establishment of human settlement have been of sharp interest for several decades. Since the turn of the century, efforts have been ramped up to make these a reality. With the execution of multiple robotic exploration missions and several more planned missions in the next two decades, as well as serious plans for human landing missions, a key need is the establishment of accurate, reliable, expansive, and cost-effective positioning and communication service for several users in the Mars environment. The Mars Communication and Navigation (MCN) mission is a multi-satellite constellation at Mars that shall provide data relay and positioning services for the identified possible users, that are orbiters, landers, ascenders, autonomous rovers, and human landing missions. The aim of MCN is to investigate and prototype key technologies for a Mars positioning and communication system using small satellites, in order to enable the development and operations of a wide range of Mars missions, providing a backbone Earth–Mars communication and navigation infrastructure. This work focuses on the critical architectural aspects of the MCN. The end-to-end (E2E) system architecture is presented, in order to provide an overview of the space and ground segments along with the operations concepts. Concerning the orbital configuration, the constellation and its deployment strategy are discussed. The MCN constellation baseline comprises 24 microsatellites operating in a Walker-like orbital configuration at Mars to provide service for more than 70 users potentially. Moreover, a Relay/Gateway link is utilized to serve as a communication bridge between Earth ground segment and the MCN constellation. Concerning the communication and navigation aspects, their architectures and possible solutions are highlighted, together with an overview of the related critical technologies required to achieve the mission objectives
Architectural optimization results for a network of earth-observing satellite nodes
Earth observation satellite programs are currently facing, for some applications, the need to deliver hourly revisit times, sub-kilometric spatial resolutions and near-real-time data access times. These stringent requirements, combined with the consolidation of small-satellite platforms and novel distributed architecture approaches, are stressing the need to study the design of new, heterogeneous and heavily networked satellite systems that can potentially replace or complement traditional space assets. In this context, this paper presents partial results from ONION, a research project devoted to study distributed satellite systems and their architecting characteristics. A design-oriented framework that allows selecting optimal architectures for a given user needs is presented in this paper. The framework has been used in the study of a strategic use-case and its results are hereby presented. From an initial design space of 5586 unique architectures, the framework has been able to pre-select 28 candidate designs by an exhaustive analysis of their performance and by quantifying their quality attributes. This very exploration of architectures and the characteristics of the solution space, are presented in this paper along with the selected solution and the results of a detailed performance analysis.Postprint (published version
Architectural optimization framework for earth-observing heterogeneous constellations : marine weather forecast case
Earth observation satellite programs are currently facing, for some applications, the need to deliver hourly revisit times, subkilometric spatial resolutions, and near-real-time data access times. These stringent requirements, combined with the consolidation of small-satellite platforms and novel distributed architecture approaches, are stressing the need to study the design of new, heterogeneous, and heavily networked satellite systems that can potentially replace or complement traditional space assets. In this context, this paper presents partial results from ONION, a research project devoted to studying distributed satellite systems and their architecting characteristics. A design-oriented framework that allows selecting optimal architectures for the given user needs is presented in this paper. The framework has been used in the study of a strategic use-case and its results are hereby presented. From an initial design space of 5586 potential architectures, the framework has been able to preselect 28 candidate designs by an exhaustive analysis of their performance and by quantifying their quality attributes. This very exploration of architectures and the characteristics of the solution space are presented in this paper along with the selected solution and the results of a detailed performance analysis.Postprint (author's final draft
A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alert
The EO-ALERT European Commission H2020 project proposes the definition, development, and verification and
validation through ground hardware testing, of a next-generation Earth Observation (EO) data processing chain. The
proposed data processing chain is based on a novel flight segment architecture that moves EO data processing
elements traditionally executed in the ground segment to on-board the satellite, with the aim of delivering EO
products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO
products delivery, and below one minute in realistic scenarios.
The proposed EO-ALERT architecture is enabled by on-board processing, recent improvements in processing
hardware using Commercial Off-The-Shelf (COTS) components, and persistent space-to-ground communications
links. EO-ALERT combines innovations in the on-board elements of the data chain and the communications,
namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of
alerts (EO products) using Machine Learning (ML) and Artificial Intelligence (AI), on-board AI-based compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links
to ground, including a separate chain for alerts with minimum latency and global coverage.
This paper presents the proposed architecture, its hardware realization for the ground testing in a representative
environment and its performance. The architecture’s performance is evaluated considering two different user
scenarios where very low latency (almost-real-time) EO product delivery is required: ship detection and extreme
weather monitoring/nowcasting. The hardware testing results show that, when implemented using COTS
components and available communication links, the proposed architecture can deliver alerts to the end user with a
latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT
architecture. In particular, in several test scenarios, for both the TerraSAR-X SAR and DEIMOS-2 Optical Very
High Resolution (VHR) missions, hardware testing of the proposed architecture has shown it can deliver EO
products and alerts to the end user globally, with latency lower than one-point-five minutes