4 research outputs found

    Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast

    No full text
    <p>Octacalcium phosphate (OCP) and hydroxyapatite (HAp) coatings were developed to control the degradation speed and to improve the biocompatibility of biodegradable magnesium alloys. Osteoblast MG-63 was cultured directly on OCP- and HAp-coated Mg-3Al-1Zn (wt%, AZ31) alloy (OCP- and HAp-AZ31) to evaluate cell compatibility. Cell proliferation was remarkably improved with OCP and HAp coatings which reduced the corrosion and prevented the H<sub>2</sub>O<sub>2</sub> generation on Mg alloy substrate. OCP-AZ31 showed sparse distribution of living cell colonies and dead cells. HAp-AZ31 showed dense and homogeneous distribution of living cells, with dead cells localized over and around corrosion pits, some of which were formed underneath the coating. These results demonstrated that cells were dead due to changes in the local environment, and it is necessary to evaluate the local biocompatibility of magnesium alloys. Cell density on HAp-AZ31 was higher than that on OCP-AZ31 although there was not a significant difference in the amount of Mg ions released in medium between OCP- and HAp-AZ31. The outer layer of OCP and HAp coatings consisted of plate-like crystal with a thickness of around 0.1 μm and rod-like crystals with a diameter of around 0.1 μm, respectively, which grew from a continuous inner layer. Osteoblasts formed focal contacts on the tips of plate-like OCP and rod-like HAp crystals, with heights of 2–5 μm. The spacing between OCP tips of 0.8–1.1 μm was wider than that between HAp tips of 0.2–0.3 μm. These results demonstrated that cell proliferation depended on the micromorphology of the coatings which governed spacing of focal contacts. Consequently, HAp coating is suitable for improving cell compatibility and bone-forming ability of the Mg alloy.</p

    Induced Rupture of Vesicles Adsorbed on Glass by Pore Formation at the Surface–Bilayer Interface

    No full text
    Supported lipid bilayers (SLBs) are often formed by spontaneous vesicle rupture and fusion on a solid surface. A well-characterized rupture mechanism for isolated vesicles is pore nucleation and expansion in the solution-exposed nonadsorbed area. In contrast, pore formation in the adsorbed bilayer region has not been investigated to date. In this work, we studied the detailed mechanisms of asymmetric rupture of giant unilamellar vesicles (GUVs) adsorbed on glass using fluorescence microscopy. Asymmetric rupture is the pathway where a rupture pore forms in a GUV near the edge of the glass–bilayer interface with high curvature and then expansion of the pore yields a planar bilayer patch. We show that asymmetric rupture occasionally resulted in SLB patches bearing a defect pore. The defect formation probability depended on lipid composition, salt concentration, and pH. Approximately 40% of negatively charged GUVs under physiological conditions formed pore-containing SLB patches, while negatively charged GUVs at low salt concentration or pH 4.0 and positively charged GUVs exhibited a low probability of defect inclusion. The edge of the defect pore was either in contact with (on-edge) or away from (off-edge) the edge of the planar bilayer. On-edge pores were predominantly formed over off-edge defects. Pores initially formed in the glass-adsorbed region before rupture, most frequently in close contact with the edge of the adsorbed region. When a pore formed near the edge of the adsorbed area or when the edge of a pore reached that of the adsorbed area by pore expansion, asymmetric rupture was induced from the defect site. These induced rupture mechanisms yielded SLB patches with an on-edge pore. In contrast, off-edge pores were produced when defect pore generation and subsequent vesicle rupture were uncoupled. The current results demonstrate that pore formation in the surface-adsorbed region of GUVs is not a negligible event

    Epitope Discovery for a Synthetic Polymer Nanoparticle: A New Strategy for Developing a Peptide Tag

    No full text
    We describe a novel epitope discovery strategy for creating an affinity agent/peptide tag pair. A synthetic polymer nanoparticle (NP) was used as the “bait” to catch an affinity peptide tag. Biotinylated peptide tag candidates of varied sequence and length were attached to an avidin platform and screened for affinity against the polymer NP. NP affinity for the avidin/peptide tag complexes was used to provide insight into factors that contribute NP/tag binding. The identified epitope sequence with an optimized length (tMel-tag) was fused to two recombinant proteins. The tagged proteins exhibited higher NP affinity than proteins without tags. The results establish that a fusion peptide tag consisting of optimized 15 amino acid residues can provide strong affinity to an abiotic polymer NP. The affinity and selectivity of NP/tMel-tag interactions were exploited for protein purification in conjunction with immobilized metal ion/His6-tag interactions to prepare highly purified recombinant proteins. This strategy makes available inexpensive, abiotic synthetic polymers as affinity agents for peptide tags and provides alternatives for important applications where more costly affinity agents are used

    Vortex-Aligned Fullerene Nanowhiskers as a Scaffold for Orienting Cell Growth

    No full text
    A versatile method for the rapid fabrication of aligned fullerene C<sub>60</sub> nanowhiskers (C<sub>60</sub>NWs) at the air–water interface is presented. This method is based on the vortex motion of a subphase (water), which directs floating C<sub>60</sub>NWs to align on the water surface according to the direction of rotational flow. Aligned C<sub>60</sub>NWs could be transferred onto many different flat substrates, and, in this case, aligned C<sub>60</sub>NWs on glass substrates were employed as a scaffold for cell culture. Bone forming human osteoblast MG63 cells adhered well to the C<sub>60</sub>NWs, and their growth was found to be oriented with the axis of the aligned C<sub>60</sub>NWs. Cells grown on aligned C<sub>60</sub>NWs were more highly oriented with the axis of alignment than when grown on randomly oriented nanowhiskers. A study of cell proliferation on the C<sub>60</sub>NWs revealed their low toxicity, indicating their potential for use in biomedical applications
    corecore