213 research outputs found

    High-threshold fault-tolerant quantum computation with analog quantum error correction

    Get PDF
    To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However,it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code.Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large scale cluster states for the topologically protected measurement based quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large scale quantum computation.Comment: 14 pages, 7 figure

    Raman Studies of Structural Changes in Diamond-like Carbon Films on Si Induced by Ultrafast Laser Ablation

    Get PDF
    In this study, the diamond-like carbon (DLC), a tetrahedral amorphous carbon sample deposited on Si, was irradiated using a picosecond laser. We evaluated the picosecond-laser-induced structural and morphological changes in DLC using micro-Raman spectroscopy via line measurements. We obtained the spatial distribution of the structure and morphology of DLC on Si by regression analysis of the Raman spectra. The photo-induced crater could be categorized into four regions: peripheral, morphological-change, structural-changes, and ablated regions. The structure and morphology of the peripheral region were similar to those of the as-received DLC. In the morphological-change region, which is inside the periphery region, the thickness of the DLC decreased without any structural changes. At the center of the crater, which is shown in black in the optical image, two regions were identified by Raman spectroscopy. On the outer side, there is a structural-change region where the graphitization of DLC materialized with a reduction in the film thickness. Inside the structural-change region, there is an ablated region where the DLC was degraded by laser ablation

    Human mast cell activation through Fc receptors and Toll-like receptors

    Get PDF
    ABSTRACTMast cells express high-affinity IgE receptors (FcεRI) on their surface and can be activated to secrete a variety of biologically active mediators by cross-linking of receptor-bound IgE. Recent studies in animal models indicate that mouse mast cells may play a protective role in host defense against bacteria through the production of tumor necrosis factor-α, mainly as a result of Toll-like receptor (TLR) 4- or CD48-mediated activation. Moreover, several recent observations in animal models have indicated that mast cells may also play a pivotal role in coordinating the early phases of autoimmune diseases, particularly those involving auto-antibodies. We recently identified functional TLR4 and FcγRI on human mast cells, in which their expression had been upregulated by interferon-γ. We compared each of the receptor-mediated gene expression profiles with the FcεRI-mediated gene expression profile using high-density oligonucleotide probe arrays and discovered that human mast cells may modulate the immune system in a receptor-specific manner

    Acute correction using focal dome osteotomy for deformity about knee joint

    Get PDF
    石川県立中央病院 整形外科金沢大学医薬保健研究域医学系Background: Correction of deformities about knee joint may prevent or delay the onset of osteoarthritis or mitigate its effects. Accurate correction of such deformities without production of secondary deformities depends on precise localization and quantification of the deformities. Methods: We corrected deformities around the knee using acute correction with focal dome osteotomy in 21 segments (15 patients). Five segments underwent limb lengthening postoperatively. Results: The mean correction angle was 16.0°. We were able to correct all segments. In the five lengthening cases, the mean external fixation index (EFI) was 70.9 days/cm, which is much higher than the generally reported EFI. There were eight complications, all but one of which occurred in lengthening cases. Conclusions: We believe that acute correction with focal dome osteotomy is very useful for cases of alignment correction, but is not indicated for cases of alignment correction with lengthening, due to a high risk of complications related to poor callus formation. © Springer-Verlag 2008

    Transcriptional response of a target plant to benzoxazinoid and diterpene allelochemicals highlights commonalities in detoxification

    Get PDF
    Background Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. Results In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. Conclusions Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction

    Correction and lengthening for deformities of the forearm in multiple cartilaginous exostoses

    Get PDF
    金沢大学医学部附属病院整形外科Background. Multiple cartilaginous exostoses cause various deformities of the epiphysis. In exostoses of the ulna, the ulna is shortened and the radius acquires varus deformity, which may lead to dislocation of the radial head. In this study, we present the results of exostoses resection, with correction and lengthening with external fixators for functional and cosmetic improvement, and prevention of radial head dislocation. Methods. We retrospectively reviewed seven forearms of seven patients who had deformities of the forearm associated with multiple cartilaginous exostoses. One patient had dislocation of the radial head. Operative technique was excision of osteochondromas from the distal ulna, correction of the radius, and ulnar lengthening with external fixation up to 5 mm plus variance. We evaluated radiographs and the range of pronation and supination. Furthermore, we conducted a follow-up of ulnar length after the operation. Results. Dislocation of the radial head of one patient was naturally reduced without any operative intervention. At the most recent follow-up, six of the seven patients showed full improvement in pronation-supination. Ulnar shortening recurred with skeletal growth of four skeletally immature patients; however, it did not recur in one skeletally mature patient. Overlength of 5 mm was negated by the recurrence of ulnar shortening about 1.5 years after the operation. Conclusions. We treated seven forearms of seven patients by excision of osteochondromas, correction of radii, and gradual lengthening of ulnas with external fixators. The results of the procedure were satisfactory, especially for function of the elbow and wrist. However, we must consider the possible recurrence of ulnar shortening within about 1.5 years during skeletal growth periods in immature patients. © 2006 The Japanese Orthopaedic Association

    CPL on/off control of an assembled system by water soluble macrocyclic chiral sources with planar chirality

    Get PDF
    Herein, we report the synthesis and planar chiral properties of a pair of water-soluble cationic pillar[5]arenes with stereogenic carbons. Interestingly, although units of the molecules were rotatable, only one planar chiral diastereomer existed in water in both cases. As a new type of chiral source, these molecules transmitted chiral information from the planar chiral cavities to the assembly of a water-soluble extended π-conjugated compound, affording circularly polarized luminescence (CPL). The chirality transfer process and resulting CPL were extremely sensitive to the feed ratio of the chiral pillar[5]arenes owing to the combined action of their planar chirality, bulkiness, and strong binding properties. When a limited amount of chiral source was added, further assembly of the extended π-conjugated compound into helical fibers with CPL was triggered. Unexpectedly, larger amounts of chiral source destroyed the helical fiber assemblies, resulting in elimination of the chirality and CPL properties from the assembled structures

    Annexin A2-STAT3-Oncostatin M receptor axis drives phenotypic and mesenchymal changes in glioblastoma

    Get PDF
    Glioblastoma (GBM) is characterized by extensive tumor cell invasion, angiogenesis, and proliferation. We previously established subclones of GBM cells with distinct invasive phenotypes and identified annexin A2 (ANXA2) as an activator of angiogenesis and perivascular invasion. Here, we further explored the role of ANXA2 in regulating phenotypic transition in GBM. We identified oncostatin M receptor (OSMR) as a key ANXA2 target gene in GBM utilizing microarray analysis and hierarchical clustering analysis of the Ivy Glioblastoma Atlas Project and The Cancer Genome Atlas datasets. Overexpression of ANXA2 in GBM cells increased the expression of OSMR and phosphorylated signal transducer and activator of transcription 3 (STAT3) and enhanced cell invasion, angiogenesis, proliferation, and mesenchymal transition. Silencing of OSMR reversed the ANXA2-induced phenotype, and STAT3 knockdown reduced OSMR protein expression. Exposure of GBM cells to hypoxic conditions activated the ANXA2-STAT3-OSMR signaling axis. Mice bearing ANXA2-overexpressing GBM exhibited shorter survival times compared with control tumor-bearing mice, whereas OSMR knockdown increased the survival time and diminished ANXA2-mediated tumor invasion, angiogenesis, and growth. Further, we uncovered a significant relationship between ANXA2 and OSMR expression in clinical GBM specimens, and demonstrated their correlation with tumor histopathology and patient prognosis. Our results indicate that the ANXA2-STAT3-OSMR axis regulates malignant phenotypic changes and mesenchymal transition in GBM, suggesting that this axis is a promising therapeutic target to treat GBM aggressiveness

    Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics

    Get PDF
    We present an overview of recent investigations of photopolymerizable nanocomposite photonic materials in which, thanks to their high degree of material selectivity, recorded volume gratings possess high refractive index modulation amplitude and high mechanical/thermal stability at the same time, providing versatile applications in light and neutron optics. We discuss the mechanism of grating formation in holographically exposed nanocomposite materials, based on a model of the photopolymerization-driven mutual diffusion of monomer and nanoparticles. Experimental inspection of the recorded gratings morphology by various physicochemical and optical methods is described. We then outline the holographic recording properties of volume gratings recorded in photopolymerizable nanocomposite materials consisting of inorganic/organic nanoparticles and monomers having various photopolymerization mechanisms. Finally, we show two examples of our holographic applications, holographic digital data storage and slow-neutron beam control.(VLID)286369
    corecore