6,068 research outputs found

    Space based microlensing planet searches

    Full text link
    The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: "Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes". They also add: "This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters". We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020-2025.Comment: 8 pages, Proceedings to the ROPACS meeting "Hot Planets and Cool Stars" (Nov. 2012, Garching), invited contributio

    Adaptation de la mesure potentiométrique à l'estimation en continu de la teneur en cuivre de solutions aqueuses présentant de fortes variations physico-chimiques

    Get PDF
    La mesure en continu, sans prélèvement et sous conditions physico-chimiques variables, de la teneur en cuivre d'une solution aqueuse, constitue le cadre de ce travail. La méthode d'estimation proposée est basée sur la potentiométrie sélective à l'aide d'une électrode spécifique au cuivre. Le comportement de l'électrode est modélisé par une loi non linéaire s'inspirant de la relation de Nernst généralisée. Le modèle intègre les paramètres température, conductivité et pH de la solution. Il rend possible une estimation de la concentration totale de cuivre même en présence de complexations hydroxyles. La phase de modélisation est présentée en détail. Les performances de l'estimateur sont évaluées puis discutées.Ion Selective electrodes (ISEs) offer an attractive solution for continuously evaluating the content of certain ionic species in aqueous media. Manufacturers propose a wide range of electrodes specific to heavy metals (Cu2+, Pb2+ …). Because they eliminate the need for sampling, are of reasonable size and have few electronic parts, ISEs seem highly appropriate for continuous monitoring in urban purification systems. Measurements obtained by these sensors in controlled media in the laboratory are usually precise, reliable and reproducible. However, it is not so with complex and uncontrolled media. This work falls within the general scope of the continuous measurement of heavy metals in wastewater. More particularly, it is devoted to the description of the behaviour of a copper-selective electrode (ISECu) in a medium presenting wide physicochemical variations.Experimental set-upIn order to study ISE behaviour, we developed an experimental platform that allowed us to reproduce in a reactor the physicochemical variations observed in wastewater, particularly with regards to salinity and acidity. The reactor was fitted with a measuring set consisting of five electrodes that measured the following parameters: pH (ref. integrated Ag/Agcl), redox (red), ISECu (ECu), temperature (T) and conductivity (s). A computer system carried out the acquisition of the five signals with a 10-second sampling period. The species concentration in the reactor was determined by calculating the weight of the solutions extracted from or injected into the reactor. Controlling the temperature of the system was undertaken using a cryostat. Sequential tests allowed the pH, redox potential and conductivity of the medium to be varied and were carried out by successive injections of different chemical products. The response times of the conductivity probe and of the pH and redox electrodes are shown here; the short response time of the sensors (20 to 30 s) and the strong correlation between the measured pH and redox are noted. ISE modellingThe model used to explain the ISE response is based on a generalization of Nernst's Law that takes into account the temperature and the activity of the free ions (Cu2+). Taking into consideration chemical equilibria and mass equations allowed us to link the activity of the free copper ions to the total injected copper concentration |Cu2+|tot and to the pH. Redox, strongly correlated to pH, was ignored in the mathematical model. Since hydroxyl complexation is the major complexation reaction (compared to other copper-binding ligands), the potential measured with the ISE took the following form:ECu=b0+b1T.log[(ϒ2|Cu2+|tot) / (1+b2ϒ210pH+b3ϒ2102pH) + b4]The activity coefficient ϒ2 of the Cu2+ ions was calculated from the ionic strength (I) of the solution, using the Debye-Hückel approximation. Ionic strength was derived from conductivity corrected to 25 °C. In wastewater, the ranges of the physicochemical parameters were as follows: T from 5 to 35°C; pH from 4 to 9; Omega from 500 to 2000 mS/cm; redox from 400 to -400 mV/ENH; and copper concentrations 10-3 mol/dm3.In order to identify the bi coefficients of the model, we established an experimental plan comprising 108 measurement points that covered, with a minimal number of experiments, the ranges of variations of the parameters of influence. A dispersion diagram of measured and modelled values gave a linear adjustment coefficient close to 0.99 and a standard deviation of 8.8 mV, which corresponds to a 0.34 decadal standard error in the concentration estimate. With a temperature of 25 °C, the model has a sensitivity of -26.4 mV/decade, very close to the theoretical slope of an electrode sensitive to divalent ions.ISE measurement of the copper concentration with large pH variations pH is the parameter which exerts the greatest influence on ISE response, which is why tests simulating copper pollution with large variations of pH were carried out. These tests enabled us to evaluate the performances of the model in terms of the estimation of copper content. Four solutions of total copper concentration equal to 10-6, 10-5, 10-4, 10-3 mol/dm3 respectively, were used. Their temperature was 25 °C and their conductivity was fixed at approximately 500 mS/cm. We varied the pH of each solution between 4 and 10. For the four tests, we show the estimate of the copper concentration obtained with our model starting from the potential measured by the ISE.In the case of strong copper pollution (10-3 mol/dm3), the model yields an overestimated concentration below pH 7 with a decadal error of less than 0.5. Above pH 7, the concentration is underestimated while maintaining a decadal error of less than 0.5. At pH 7, a 0.04-decade minimal error is found. For pollution equal to or less than 10-4 mol/dm3, the model gives good results in an acid or neutral medium with a decadal error usually less than 0.3. In an alkaline medium, concentration is overestimated. In this case the error increases in a roughly linear manner with the pH and the co-logarithm of copper concentration. From the results of these tests, we defined a valid domain of ISE copper concentration measurement using our model. In conclusion, the suggested method, although not very accurate, could be used as an indicator of the copper concentration level in wastewater. The ISE-response correction model is currently being tested under operational conditions at a water treatment plant in Nancy-Maxéville (France)

    Finding RR Lyrae Stars with SkyMapper: an Observational Test

    Full text link
    One of the major science goals of the SkyMapper Survey of the Southern Hemisphere sky is the determination of the shape and extent of the halo of the Galaxy. In this paper we quantify the likely efficiency and completeness of the survey as regards the detection of RR Lyrae variable stars, which are excellent tracers of the halo stellar population. We have accomplished this via observations of the RR Lyrae-rich globular cluster NGC 3201. We find that for single epoch uvgri observations followed by two further epochs of g, r imaging, as per the intended three-epoch survey strategy, we recover known RR Lyraes with a completeness exceeding 90%. We also investigate boundaries in the gravity-sensitive single-epoch two-color diagram that yield high completeness and high efficiency (i.e., minimal contamination by non-RR Lyraes) and the general usefulness of this diagram in separating populations.Comment: 10 pages, 5 figures, to appear in the Publications of the Astronomical Society of Australia (PASA), published by Cambridge University Pres

    Design and Measurement of Integrated Converters for Belt-driven Starter-generator in 48 V Micro/mild Hybrid Vehicles

    Get PDF
    With reference to a 48 V belt-driven starter-generator, used in micro/mild hybrid vehicles, the paper shows the design and measurement of an integrated H-bridge and of a compact DC/DC converter, both fabricated in low-cost HV-MOS technology. The H-bridge is in charge of rotor excitation and, thanks to a direct copper bonding of the HV-MOS devices on a ceramic substrate, it ensures a full-integrated solution with low ON-resistance values. The compact DC/DC converter interfaces the 48 V power domain with the lower voltage domain of sensing and control electronics, such as 5 V and 1.65 V in this case study, without using cumbersome inductors and transformers. The latter are difficult to integrate in silicon technology. The converter has a multi stage architecture, where each stage implements a switched capacitor regulation. Multiple voltage outputs are supported, with a configurable regulation factor, sustaining an input voltage variation from 6 V (in case of cranking) up to 60 V. Specific design techniques have been implemented to reduce electromagnetic interference (EMI), typical of switching converters. Experimental measurements on fabricated prototype chipsets confirm the suitability of the presented designs for low-EMI 48 V application

    Photon deflection and precession of the periastron in terms of spatial gravitational fields

    Full text link
    We show that a Maxwell-like system of equations for spatial gravitational fields g\bf g and B\bf B (latter being the analogy of a magnetic field), modified to include an extra term for the B\bf B field in the expression for force, leads to the correct values for the photon deflection angle and for the precession of the periastron

    The DICE calibration project: design, characterization, and first results

    Full text link
    We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an illumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3{\AA} on the filter cutoff positions. The light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at NIST. The radiant intensity of each beam is mapped, and spectra are measured for each LED. All measurements are conducted at temperatures ranging from 0{\deg}C to 25{\deg}C in order to study the temperature dependence of the system. The photometric and spectroscopic measurements are combined into a model that predicts the spectral intensity of the source as a function of temperature. We find that the calibration beams are stable at the 10410^{-4} level -- after taking the slight temperature dependence of the LED emission properties into account. We show that the spectral intensity of the source can be characterised with a precision of 3{\AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5% depending on how we understand the off-diagonal terms of the error budget affecting the calibration of the NIST photodiode. With a routine 60-mn calibration program, the apparatus is able to constrain the passbands at the targeted precision levels.Comment: 25 pages, 27 figures, accepted for publication in A&

    Weber-like interactions and energy conservation

    Get PDF
    Velocity dependent forces varying as k(r^/r)(1μr˙2+γrr¨)k(\hat{r}/r)(1 - \mu \dot{r}^2 + \gamma r \ddot{r}) (such as Weber force), here called Weber-like forces, are examined from the point of view of energy conservation and it is proved that they are conservative if and only if γ=2μ\gamma=2\mu. As a consequence, it is shown that gravitational theories employing Weber-like forces cannot be conservative and also yield both the precession of the perihelion of Mercury as well as the gravitational deflection of light.Comment: latex, 11 pages, no figure
    corecore