39 research outputs found
Attosecond sampling of arbitrary optical waveforms
Advances in the generation of ultrashort laser pulses, and the emergence of new research areas such as attosecond science, nanoplasmonics, coherent control, and multidimensional spectroscopy, have led to the need for a new class of ultrafast metrology that can measure the electric field of complex optical waveforms spanning the ultraviolet to the infrared. Important examples of such waveforms are those produced by spectral control of ultrabroad bandwidth pulses, or by Fourier synthesis. These are typically tailored for specific purposes, such as to increase the photon energy and flux of high-harmonic radiation, or to control dynamical processes by steering electron dynamics on subcycle time scales. These applications demand a knowledge of the full temporal evolution of the field. Conventional pulse measurement techniques that provide estimates of the relative temporal or spectral phase are unsuited to measure such waveforms. Here we experimentally demonstrate a new, all-optical method for directly measuring the electric field of arbitrary ultrafast optical waveforms. Our method is based on high-harmonic generation (HHG) driven by a field that is the collinear superposition of the waveform to be measured with a stronger probe laser pulse. As the delay between the pulses is varied, we show that the field of the unknown waveform is mapped to energy shifts in the high-harmonic spectrum, allowing a direct, accurate, and rapid retrieval of the electric field with subcycle temporal resolution at the location of the HHG
Chirp-control of resonant high-order harmonic generation in indium ablation plumes driven by intense few-cycle laser pulses
We have studied high-order harmonic generation (HHG) in an indium ablation plume driven by intense few-cycle laser pulses centered at 775 nm as a function of the frequency chirp of the laser pulse. We found experimentally that resonant emission lines between 19.7 eV and 22.3 eV (close to the 13th and 15th harmonic of the laser) exhibit a strong, asymmetric chirp dependence, with pronounced intensity modulations. The chirp dependence is reproduced by our numerical time-dependent Schrödinger equation simulations of a resonant HHG by the model indium ion. As demonstrated with our separate simulations of HHG within the strong field approximation, the resonance can be understood in terms of the chirp-dependent HHG photon energy coinciding with the energy of an autoionizing state to ground state transition with high oscillator strength. This supports the validity of the general theory of resonant four-step HHG in the few-cycle limit
Direct in-situ single-shot measurements of the absolute carrier-envelope phases of ultrashort pulses
Many important physical processes such as nonlinear optics and coherent control are highly sensitive to the absolute carrier-envelope phase (CEP) of driving ultrashort laser pulses. This makes the measurement of CEP immensely important in relevant fields. Even though relative CEPs can be measured with a few existing technologies, the estimate of the absolute CEP is not straightforward and always requires theoretical inputs. Here, we demonstrate a novel in-situ technique based on angular streaking that can achieve such a goal without complicated calibration procedures. Single-shot measurements of the absolute CEP have been achieved with an estimated precision of 0.19 radians
Synchronized pulses generated at 20 eV and 90 eV for attosecond pump-probe experiments
The development of attosecond pulses across different photon energies is an essential precursor to performing pumpâprobe attosecond experiments in complex systems, where the potential of attosecond science1 can be further developed2,3. We report the generation and characterization of synchronized extreme ultraviolet (90â
eV) and vacuum ultraviolet (20â
eV) pulses, generated simultaneously via high-harmonic generation. The vacuum ultraviolet pulses are well suited for pumpâprobe experiments that exploit the high photo-ionization cross-sections of many molecules in this spectral region4 as well as the higher photon flux due to the higher conversion efficiency of the high harmonic generation process at these energies5. We temporally characterized all pulses using the attosecond streaking technique6 and the FROG-CRAB retrieval method7. We report 576â±â16â
as pulses at 20â
eV and 257â±â21â
as pulses at 90â
eV. Our demonstration of synchronized attosecond pulses at different photon energies, which are inherently jitter-free due to the common-path geometry implemented, offers unprecedented possibilities for pumpâprobe studies
Temporal broadening of attosecond photoelectron wavepackets from solid surfaces
The response of solids to electromagnetic fields is of crucial importance in many areas of science and technology. Many fundamental questions remain to be answered about the dynamics of the photoexcited electrons that underpin this response, which can evolve on timescales of tens to hundreds of attoseconds. How, for example, is the photoexcited electron affected by the periodic potential as it travels in the solid, and how do the other electrons respond in these strongly correlated systems? Furthermore, control of electronic motion in solids with attosecond precision would pave the way for the development of ultrafast optoelectronics. Attosecond electron dynamics can be traced using streaking, a technique in which a strong near-infrared laser field accelerates an attosecond electron wavepacket photoemitted by an extreme ultraviolet light pulse, imprinting timing information onto it. We present attosecond streaking measurements on the wide-bandgap semiconductor tungsten trioxide, and on gold, a metal used in many nanoplasmonic devices. Information about electronic motion in the solid is encoded on the temporal properties of the photoemitted electron wavepackets, which are consistent with a spread of electron transport times to the surface following photoexcitation
Attosecond physics at the nanoscale
Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds, which is comparable with the optical field. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this article we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as ATI and HHG. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution
Probing orbital structure of polyatomic molecules by high-order harmonic generation (vol 98, art no 203007, 2007)
Publisherâs Note: Probing Orbital Structure of Polyatomic Molecules by High-Order Harmonic Generation [Phys. Rev. Lett. 98, 203007 (2007)
Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule
The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pumpâx-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics
Anomalous Anisotropy in the Explosion of Rare-Gas Clusters Irradiated with Intense Few-Cycle Laser Pulses
We report anomalous anisotropy in short pulse driven cluster explosions, with more energetic ions emitted in the direction perpendicular to the laser polarization. This anisotropy decreases and eventually reverts as the pulse length is increased