5,562 research outputs found
Superconductivity in heavily compensated Mg-doped InN
We report superconductivity in Mg-doped InN grown by molecular beam epitaxy. Superconductivity phase transition temperature occurs Tc = 3.97 K as determined by magnetoresistance and Hall resistance measurements. The two-dimensional (2D) carrier density of the measured sample is n2D = 9×1014 cm−2 corresponding to a three-dimensional (3D) electron density of n3D = 1.8×1019 cm−3 which is within the range of values between Mott transition and the superconductivity to metal transition. We propose a plausible mechanism to explain the existence of the superconductivity in terms of a uniform distribution of superconducting InN nanoparticles or nanosized indium dots forming microscopic Josephson junctions in the heavily compensated insulating bulk InN matrix
Radiation Damage and Recovery Properties of Common Plastics PEN (Polyethylene Naphthalate) and PET (Polyethylene Terephthalate) Using a 137Cs Gamma Ray Source Up To 1 MRad and 10 MRad
Polyethylene naphthalate (PEN) and polyethylene teraphthalate (PET) are cheap
and common polyester plastics used throughout the world in the manufacturing of
bottled drinks, containers for foodstuffs, and fibers used in clothing. These
plastics are also known organic scintillators with very good scintillation
properties. As particle physics experiments increase in energy and particle
flux density, so does radiation exposure to detector materials. It is therefore
important that scintillators be tested for radiation tolerance at these
generally unheard of doses. We tested samples of PEN and PET using laser
stimulated emission on separate tiles exposed to 1 MRad and 10 MRad gamma rays
with a 137Cs source. PEN exposed to 1 MRad and 10 MRad emit 71.4% and 46.7% of
the light of an undamaged tile, respectively, and maximally recover to 85.9%
and 79.5% after 5 and 9 days, respectively. PET exposed to 1 MRad and 10 MRad
emit 35.0% and 12.2% light, respectively, and maximally recover to 93.5% and
80.0% after 22 and 60 days, respectively
Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins
We describe a new regime for low-field magnetoresistance in organic
semiconductors, in which the spin-relaxing effects of localized nuclear spins
and electronic spins interfere. The regime is studied by the controlled
addition of localized electronic spins to a material that exhibits substantial
room-temperature magnetoresistance (\%). Although initially the
magnetoresistance is suppressed by the doping, at intermediate doping there is
a regime where the magnetoresistance is insensitive to the doping level. For
much greater doping concentrations the magnetoresistance is fully suppressed.
The behavior is described within a theoretical model describing the effect of
carrier spin dynamics on the current
Immense magnetic response of exciplex light emission due to correlated spin-charge dynamics
As carriers slowly move through a disordered energy landscape in organic
semiconductors, tiny spatial variations in spin dynamics relieve spin blocking
at transport bottlenecks or in the electron-hole recombination process that
produces light. Large room-temperature magnetic-field effects (MFE) ensue in
the conductivity and luminescence. Sources of variable spin dynamics generate
much larger MFE if their spatial structure is correlated on the nanoscale with
the energetic sites governing conductivity or luminescence such as in
co-evaporated organic blends within which the electron resides on one molecule
and the hole on the other (an exciplex). Here we show that exciplex
recombination in blends exhibiting thermally-activated delayed fluorescence
(TADF) produces MFE in excess of 60% at room temperature. In addition, effects
greater than 4000% can be achieved by tuning the device's current-voltage
response curve by device conditioning. These immense MFEs are both the largest
reported values for their device type at room temperature. Our theory traces
this MFE and its unusual temperature dependence to changes in spin mixing
between triplet exciplexes and light-emitting singlet exciplexes. In contrast,
spin mixing of excitons is energetically suppressed, and thus spin mixing
produces comparatively weaker MFE in materials emitting light from excitons by
affecting the precursor pairs. Demonstration of immense MFE in common organic
blends provides a flexible and inexpensive pathway towards magnetic
functionality and field sensitivity in current organic devices without
patterning the constituent materials on the nanoscale. Magnetic fields increase
the power efficiency of unconditioned devices by 30% at room temperature, also
showing that magnetic fields may increase the efficiency of the TADF process.Comment: 12 pages, PRX in pres
Energy Relaxation Rates in AlInN/AlN/GaN Heterostructures
Cataloged from PDF version of article.The two-dimensional (2D) electron energy relaxation in Al0.83In0.17N/AlN/GaN heterostructures has been investigated experimentally. Shubnikov-de Haas (SdH) effect measurements were employed in the investigations. The electron temperature (T (e)) of hot electrons was obtained from the lattice temperature (T (L)) and the applied electric field dependencies of the amplitude of SdH oscillations. The experimental results for the electron temperature dependence of power loss are also compared with current theoretical models for power loss in 2D semiconductors. The power loss from the electrons was found to be proportional to (T (e) (3) - T (L) (3) ) for electron temperatures in the range 1.8 K < T (e) < 14 K, indicating that the energy relaxation of electrons is due to acoustic phonon emission via unscreened piezoelectric interaction. The effective mass and quantum lifetime of the 2D electrons have been determined from the temperature and magnetic field dependencies of the amplitude of SdH oscillations, respectively. The values obtained for quantum lifetime suggest that remote ionized impurity scattering is the dominant scattering mechanism in Al0.83In0.17N/AlN/GaN heterostructures
Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry
Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier
Tubes have been characterized for use in a Secondary Emission (SE) Ionization
Calorimetry study. SE Ionization Calorimetry is a novel technique to measure
electromagnetic shower particles in extreme radiation environments. The
different operation modes used in these tests were developed by modifying the
conventional PMT bias circuit. These modifications were simple changes to the
arrangement of the voltage dividers of the baseboard circuits. The PMTs with
modified bases, referred to as operating in SE mode, are used as an SE detector
module in an SE calorimeter prototype, and placed between absorber materials
(Fe, Cu, Pb, W, etc.). Here, the technical design of different operation modes,
as well as the characterization measurements of both SE modes and the
conventional PMT mode are reported
Determination of the LO phonon energy by using electronic and optical methods in AIGaN/GaN
Cataloged from PDF version of article.The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant
Complementary and alternative technique for the determination of electron effective mass: Quantum hall effect
The quantum Hall effect measurements in the AlInN/AlN/GaN heterostructure are studied in the temperature range from 1.8 K to 14 K and a magnetic field up to 11 T. The quantized two-dimensional electron gas was placed at the AlN/GaN interface. The Hall resistance of two-dimensional electron gas has been found to be quantized at multiple integers of von Klitzing constant that refers to the integer quantum Hall effect. The experimental data have been used to determine the Fermi energy, carrier density, and effective mass two-dimensional electrons. The results are in agreement with those derived from the longitudinal magnetoresistance in the same structure. © 2016, National Institute of Optoelectronics. All rights reserved
SiC substrate effects on electron transport in the epitaxial graphene layer
Cataloged from PDF version of article.Hall effect measurements on epitaxial graphene (EG) on SiC substrate have been carried out as a function of temperature. The mobility and concentration of electrons within the two-dimensional electron gas (2DEG) at the EG layers and within the underlying SiC substrate are readily separated and characterized by the simple parallel conduction extraction method (SPCEM). Two electron carriers are identified in the EG/SiC sample: one high-mobility carrier (3493 cm(2)/Vs at 300 K) and one low-mobility carrier (1115 cm(2)/Vs at 300 K). The high mobility carrier can be assigned to the graphene layers. The second carrier has been assigned to the SiC substrate
- …