6 research outputs found
Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications
Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak) and amber (587 nm peak) LEDs it achieves 8 m lateral resolution using a CMOS imaging chip (as configured for serial data speeds) or 4 m resolution using USB imaging chips. The imager consists of a modified commercial off-the-shelf CMOS chip camera, amber, blue and white LEDs, as well as a relay lens and dual-band filters to obviate moving parts while supporting both fluorescence wavelengths
GeneLab: A Systems Biology Platform for Spaceflight Omics Data
NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and deep curation of metadata for integrative analysis, allowing researchers to uncover cellular networks as observed in systems biology platforms. Consequently, the scientific community will have access to a more complete picture of functional and regulatory networks responsive to the spaceflight environment.. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and enable emerging terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space. As a result, open access to the data will foster new hypothesis-driven research for future spaceflight studies spanning basic science to translational science
Flight Results from the GeneSat-1 Biological Microsatellite Mission
The mission of the GeneSat-1 technology demonstration spacecraft is to validate the use of research-quality instrumentation for in situ biological research and processing. To execute this mission, the GeneSat-1 satellite was launched on December 16, 2006 from Wallops Flight Facility as a secondary payload off of a Minotaur launch vehicle. During the first week of operation, the core biological growth test was successfully executed, and by the end of the first month of operation all primary science and engineering test objectives had been successfully performed. In its current phase of operation, a variety of secondary technology characterizations tests are being performed, and a wide range of educational, training, and public outreach programs are being supported. This paper reviews the GeneSat-1 mission system, discusses the government-industry-university teaming approach, and presents flight results pertaining to the primary scientific and engineering experiments
Extended Life Flight Results from the GeneSat-1 Biological Microsatellite Mission
The Genesat-1 technology demonstration mission validated the use of research quality instrumentation for in situ biological research and processing. After its launch from Wallops Flight Facility as a secondary payload off a Minotaur launch vehicle on December 16, 2006, all primary science and engineering test objectives were completed successfully within one month of operation. Since that time, additional trend analyses and experiments have been performed to further quantify the performance of the bus; such quantification is of particular interest for at least five heritage-based missions currently in development, three of which are set to launch in 2008 and two slated for 2009. This paper revisits the GeneSat-1 mission system and presents results from the extended mission
O/OREOS Nanosatellite: A Multi-Payload Technology Demonstration
The Organism/Organic Exposure to Orbital Stresses (O/OREOS) nanosatellite follows in the footsteps of the successful GeneSat-1 and PharmaSat missions to validate key technologies developed to conduct compelling science experiments in space for a small price tag. Developed by the Small Spacecraft Division at NASA Ames Research Center, the 5.5-kg 3U satellite contains two completely independent payloads and a novel drag-enhancing device which shortens the spacecraft’s orbital lifetime, thereby mitigating orbital debris. This paper provides an overview of the mission as well as an in-depth discussion of each payload and the de-orbit mechanism (DOM) while highlighting lessons learned from the spacecraft’s development
Initial Flight Results from the PharmaSat Biological Microsatellite Mission
The mission of the PharmaSat biological microsatellite is to investigate the efficacy of anti-fungal agents in the spaceflight environment. The satellite uses autonomous, in situ bio-analytical and sample management technologies in order to culture and characterize the growth of multiple samples of yeast, which are exposed to differing levels of an anti-fungal agent during their growth cycle. The satellite uses a 10 cm x 10 cm x 30 cm Cubesat-class structure with body-mounted solar panels, an ISM-band transceiver, and a simple PIC-class microcontroller for the main flight computer. PharmaSat was launched on May 19 , 2009 from Wallops Flight Facility as a secondary payload on a Minotaur launch vehicle. During the first week of operation, the primary biological experiment was conducted, and data from this experiment was downloaded thereby achieving mission success. The PharmaSat design and mission control architecture inherits many features and design strategies from the GeneSat-1 mission, which was previously developed by the same design group at NASA Ames Research Center and Santa Clara University. This paper presents the PharmaSat mission, the design of its spacecraft and ground segment, and initial flight results