9 research outputs found

    Phototropic Guest–Host Liquid Crystal Systems: Environmental Effects on Naphthopyran Kinetics

    No full text
    Photoinduced isothermal and order-increasing phase transitions can be observed in guest–host liquid crystal mixtures containing naphthopyran derivatives. The changes are attributed to the different geometry and a less energetically favorable interaction with the liquid crystal molecules for the ground state naphthopyran species with respect to the photoproduct. In this study, we have investigated the thermal relaxation of the naphthopyran photoproduct back to the initial species as a function of temperature and excitation conditions. It was found that the thermal relaxation is typically first-order and its characteristic rate has a temperature dependence that is different in the anisotropic and isotropic states of the mesogenic solvents. In particular, the activation energy for thermal relaxation is larger in the ordered phases of mesogenic solvents relative to their isotropic phase. The findings suggests that the naphthopyran relaxation is hindered by the organization of the host environment. These results will be useful to build a more complete understanding of the mutual guest–host interactions in naphthopyran-containing guest–host LC systems

    Hidden Gratings in Holographic Liquid Crystal Polymer-Dispersed Liquid Crystal Films

    No full text
    Dynamic diffraction gratings that are hidden in the field-off state are fabricated utilizing a room-temperature photocurable liquid crystal (LC) monomer and nematic LC (NLC) using holographic photopolymerization techniques. These holographic LC polymer-dispersed LCs (HLCPDLCs) are hidden because of the refractive index matching between the LC polymer and the NLC regions in the as-formed state (no E-field applied). Application of a moderate E-field (5 V/μm) generates a refractive index mismatch because of the NLC reorientation (along the E-field) generating high-diffraction efficiency transmission gratings. These dynamic gratings are characterized by morphological, optical, and electrooptical techniques. They exhibit a morphology made of oriented LC polymer regions (containing residual NLC) alternating with a two-phase region of an NLC and LC polymer. Unlike classic holographic polymer-dispersed LC gratings formed with a nonmesogenic monomer, there is index matching between the as-formed alternating regions of the grating. These HLCPDLCs exhibit broad band and high diffraction efficiency (≈90%) at the Bragg angle, are transparent to white light across the visible range because of the refractive index matching, and exhibit fast response times (1 ms). The ability of HLCPDLCs not to consume electrical power in the off state opens new possibilities for the realization of energy-efficient switchable photonic devices

    Hidden Gratings in Holographic Liquid Crystal Polymer-Dispersed Liquid Crystal Films

    No full text
    Dynamic diffraction gratings that are hidden in the field-off state are fabricated utilizing a room-temperature photocurable liquid crystal (LC) monomer and nematic LC (NLC) using holographic photopolymerization techniques. These holographic LC polymer-dispersed LCs (HLCPDLCs) are hidden because of the refractive index matching between the LC polymer and the NLC regions in the as-formed state (no E-field applied). Application of a moderate E-field (5 V/μm) generates a refractive index mismatch because of the NLC reorientation (along the E-field) generating high-diffraction efficiency transmission gratings. These dynamic gratings are characterized by morphological, optical, and electrooptical techniques. They exhibit a morphology made of oriented LC polymer regions (containing residual NLC) alternating with a two-phase region of an NLC and LC polymer. Unlike classic holographic polymer-dispersed LC gratings formed with a nonmesogenic monomer, there is index matching between the as-formed alternating regions of the grating. These HLCPDLCs exhibit broad band and high diffraction efficiency (≈90%) at the Bragg angle, are transparent to white light across the visible range because of the refractive index matching, and exhibit fast response times (1 ms). The ability of HLCPDLCs not to consume electrical power in the off state opens new possibilities for the realization of energy-efficient switchable photonic devices

    A New Twist on Scanning Thermal Microscopy

    No full text
    The thermal bimorph is a very popular thermal sensing mechanism used in various applications from meat thermometers to uncooled infrared cameras. While thermal bimorphs have remained promising for scanning thermal microscopy, unfortunately the bending of the bimorph directly interferes with the bending associated with topographical information. We circumvent this issue by creating bimorphs that twist instead of bending and demonstrate the superior properties of this approach as compared to conventional scanning thermal microscopy

    Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals

    No full text
    We report on the preparation of color-tunable mirrors based on electrically regulated bandwidth broadening of the circularly polarized reflection of polymer-stabilized cholesteric liquid crystals (PSCLCs). A number of improvements relating to the practical implementation of these materials are detailed including color and bandwidth stability, baseline optical properties, and response times. Experimentation reported herein focuses on the contribution of structural chirality, viscoelastic properties of the polymer network architecture, and electro-optic drive schemes. Through the examination of samples prepared in different conditions and compositions, we further elucidate the dominant role of structural chirality as well as the impact of cross-linking of the polymer stabilizing network on the threshold voltage and relative change in bandwidth per voltage (Δ­(Δλ)/V). Furthermore, the appearance of nonideal optical properties (scatter and haze) in some samples is shown to be correlated with the polymer/LC compatibility and effectiveness of structural templating. Due to the employment of an electromechanical displacement mechanism, the switching times of the PSCLCs are slower than mechanisms based on liquid crystal reorientation. However, a potential approach is identified to reduce the on and off switching times to approximately 1 s

    Vertically Aligned Peptide Nanostructures Using Plasma-Enhanced Chemical Vapor Deposition

    No full text
    In this study, we utilize plasma-enhanced chemical vapor deposition (PECVD) for the deposition of nanostructures composed of diphenylalanine. PECVD is a solvent-free approach and allows sublimation of the peptide to form dense, uniform arrays of peptide nanostructures on a variety of substrates. The PECVD deposited d-diphenylalanine nanostructures have a range of chemical and physical properties depending on the specific discharge parameters used during the deposition process

    Tuning Ion Conducting Pathways Using Holographic Polymerization

    No full text
    Polymer electrolyte membranes (PEMs) with high and controlled ionic conductivity are important for energy-related applications, such as solid-state batteries and fuel cells. Herein we disclose a new strategy to fabricate long-range ordered PEMs with tunable ion conducting pathways using a holographic polymerization (HP) method. By incorporating polymer electrolyte into the carefully selected HP system, electrolyte layers/channels with length scales of a few tens of nanometers to micrometers can be formed with controlled orientation and anisotropy; ionic conductivity anisotropy as high as 37 has been achieved
    corecore