48 research outputs found

    Zur Neurobiologie der Psychopathie

    Get PDF
    Die Erforschung der neurobiologischen Grundlagen der Psychopathie hat in den letzten Jahren an Bedeutung gewonnen. In diesem Artikel soll eine kurze Übersicht des aktuellen Stands der Forschung gegeben werden. In Bildgebungsmetaanalysen finden sich Hinweise auf eine Volumenminderung grauer Substanz im linken dorsolateralen präfrontalen Kortex und im medialen Orbitofrontalkortex bei Psychopathen. Des Weiteren zeigt eine groß angelegte Metaanalyse robuste Evidenz für veränderte Hirnaktivität im frontoinsulären Kortex, im lateralen präfrontalen Kortex, im dorsomedialen präfrontalen Kortex und in der rechten Amygdala. Aus der Kombination von Neurobildgebung und Datenbankanalysen ist zudem bekannt, dass es eine Beziehung zwischen den beschriebenen Hirnveränderungen und typischen Psychopathiesymptomen gibt. Der Vergleich von Hirnveränderungen mit Neurotransmitterkarten und Genexpressionskarten gibt Hinweise auf mögliche zugrunde liegende molekulare Mechanismen, insbesondere eine Dysregulation im serotonergen System. In der Zusammenschau weisen diese Befunde klar auf fassbare neurobiologische Veränderungen bei hochgradig psychopathischen Personen hin. Zwar können sie keinen Aufschluss darüber geben, ob es sich bei den Veränderungen um Ursache oder Folge der Störung handelt, doch können sie Ansatzpunkte für spezifischere, biologische Therapieverfahren bieten

    Exploring the neural correlates of (altered) moral cognition in psychopaths

    Get PDF
    Abstract Research into the neurofunctional mechanisms of psychopathy has gathered momentum over the last years. Previous neuroimaging studies have identified general changes in brain activity of psychopaths. In an exploratory meta‐analysis, we here investigated the neural correlates of impaired moral cognition in psychopaths. Our analyses replicated general effects in the dorsomedial prefrontal cortex, lateral prefrontal cortex, fronto‐insular cortex, and amygdala, which have been reported recently. In addition, we found aberrant brain activity in the midbrain and inferior parietal cortex. Our preliminary findings suggest that alterations in both regions may represent more specific functional brain changes related to (altered) moral cognition in psychopaths. Furthermore, future studies including a more comprehensive corpus of neuroimaging studies on moral cognition in psychopaths should re‐examine this notion

    Sexual motivation is reflected by stimulus-dependent motor cortex excitability

    Get PDF
    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavio

    Anti-Suicidal Efficacy of Repetitive Transcranial Magnetic Stimulation in Depressive Patients: A Retrospective Analysis of a Large Sample

    Get PDF
    Background: Suicide is a major public health problem. About 90% of suicide victims have one or more major psychiatric disorder, with a reported 20-fold increased risk for suicide in patients with affective disorders in comparison with healthy subjects. Repetitive transcranial magnetic stimulation (rTMS) has been established as an effective alternative or adjunctive treatment option for patients with depressive disorders, but little is known about its effects on suicide risk. Objective: For the assessment of the effectiveness of rTMS on suicidal ideation and behaviors, we performed a retrospective analysis of a large sample of patients with depressive disorders, who were treated with rTMS. Methods: We analyzed the records of 711 TMS in- and out-patients with depressive affective disorders in a tertiary referral hospital between 2002 and 2017. Out of these patients we were able to collect Hamilton depression rating scale (HAMD) data of 332 patients (180 females, 152 males; age range 20 to 79 years; mean age 47.3 ± 12.3) for which we analyzed the change of suicidal ideation by using item 3 (suicidality) of HAMD. Results: Out of all 711 patients treated with rTMS for their depression, one patient (0.1%) committed suicide during the TMS treatment. In the statistical analysis of the subsample with 332 patients there was an overall amelioration of depressive symptoms accompanied by a significant decrease in the suicidality item with a medium effect size. Decrease in suicidality was not inferior to changes in other items as indicated by effect sizes. Forty-seven percent of patients showed an amelioration in suicidality, 41.3% of patients did not show a change in their suicidality’s scores, and 11.7% of patients showed an increase in suicidality’s scores from baseline to final rating. Correlation of item 3 (suicidality) and item 7 (drive) demonstrated a significant positive association, revealing improved drive with a parallel decreased suicidality. Conclusion: Based on the proposed data, there is no evidence that rTMS increases the risk for suicide during the course of the treatment. Conversely, rTMS tends to reduce suicidal ideation. Our findings call for further rTMS controlled studies using large sample sizes and specific suicidality assessment measures to obtain more conclusive results

    Predictors for rTMS response in chronic tinnitus

    Get PDF
    Background: Repetitive transcranial magnetic stimulation (rTMS) has been studied as a treatment option for chronic tinnitus for almost 10 years now. Although most of these studies have demonstrated beneficial effects, treatment results show high interindividual variability and yet, little is known about predictors for treatment response. Methods: Data from 538 patients with chronic tinnitus were analyzed. Patients received either low-frequency rTMS over the left temporal cortex (n = 345, 1 Hz, 110% motor threshold, 2000 stimuli/day) or combined temporal and frontal stimulation (n = 193, 110% motor threshold, 2000 stimuli at 20 Hz over left dorsolateral prefrontal cortex plus 2000 stimuli at 1 Hz over temporal cortex). Numerous demographic, clinical, and audiological variables as well as different tinnitus characteristics were analyzed as potential predictors for treatment outcome, which was defined as change in the tinnitus questionnaire (TQ) score. Results: Both stimulation protocols resulted in a significant decrease of TQ scores. Effect sizes were small, however. In the group receiving combined treatment, patients with comorbid temporomandibular complaints benefited more from rTMS than patients without those complaints. In addition, patients with higher TQ scores at baseline had more pronounced TQ reductions than patients with low TQ baseline scores. Also, patients who had already improved from screening to baseline benefited less than patients without initial improvement. Conclusions: The results from this large sample demonstrate that rTMS shows only small but clinically significant effects in the treatment of chronic tinnitus. There are no good demographic or clinical predictors for treatment outcome

    Can Temporal Repetitive Transcranial Magnetic Stimulation be Enhanced by Targeting Affective Components of Tinnitus with Frontal rTMS? A Randomized Controlled Pilot Trial

    Get PDF
    Objectives: Low-frequency repetitive transcranial magnetic stimulation (rTMS) of the temporal cortex has been investigated as a new treatment tool for chronic tinnitus during the last years and has shown moderate efficacy. However, there is growing evidence that tinnitus is not a pathology of a specific brain region, but rather the result of network dysfunction involving both auditory and non-auditory brain regions. In functional imaging studies the right dorsolateral prefrontal cortex has been identified as an important hub in tinnitus related networks and has been shown to particularly reflect the affective components of tinnitus. Based on these findings we aimed to investigate whether the effects of left low-frequency rTMS can be enhanced by antecedent right prefrontal low-frequency rTMS. Study Design: Fifty-six patients were randomized to receive either low-frequency left temporal rTMS or a combination of low-frequency right prefrontal followed by low-frequency left temporal rTMS. The change of the tinnitus questionnaire (TQ) score was the primary outcome, secondary outcome parameters included the Tinnitus Handicap Inventory, numeric rating scales, and the Beck Depression Inventory. The study is registered in clinicaltrials.gov (NCT01261949). Results: Directly after therapy there was a significant improvement of the TQ-score in both groups. Comparison of both groups revealed a trend toward more pronounced effects for the combined group (effect size: Cohen’s d = 0.176), but this effect did not reach significance. A persistent trend toward better efficacy was also observed in all other outcome criteria. Conclusion: Additional stimulation of the right prefrontal cortex seems to be a promising strategy for enhancing TMS effects over the temporal cortex. These results further support the involvement of the right DLPFC in the pathophysiology of tinnitus. The small effect size might be due to the study design comparing the protocol to an active control condition

    Daily high-frequency transcranial random noise stimulation of bilateral temporal cortex in chronic tinnitus – a pilot study

    Get PDF
    Several studies emphasized the potential of single and multiple transcranial random noise stimulation (tRNS) sessions to interfere with auditory cortical activity and to reduce tinnitus loudness. It was the objective of the present study to evaluate the use of high-frequency (hf) tRNS in a one-arm pilot study in patients with chronic tinnitus. Therefore, 30 patients received 10 sessions of high frequency tRNS (100-640 Hz; 2 mA; 20 minutes) over the bilateral temporal cortex. All patients had received rTMS treatment for their tinnitus at least 3 months before tRNS. Primary outcome was treatment response (tinnitus questionnaire reduction of >= 5 points). The trial was registered at clinicaltrials.gov (NCT01965028). Eight patients (27%) responded to tRNS. Exactly the same number of patients had responded before to rTMS, but there were only two "double responders" for both treatments. None of the secondary outcomes (tinnitus numeric rating scales, depressivity, and quality of life) was significant when results were corrected for multiple comparisons. tRNS treatment was accompanied by tolerable side effects but resulted in temporal increases in tinnitus loudness in 20% of the cases (2 drop-outs). Our trial showed that hf-tRNS is feasible for daily treatment in chronic tinnitus. However, summarizing low treatment response, increase of tinnitus loudness in 20% of patients and missing of any significant secondary outcome, the use of hf-tRNS as a general treatment for chronic tinnitus cannot be recommended at this stage. Differences in treatment responders between tRNS and rTMS highlight the need for individualized treatment procedures

    Individualized rTMS treatment in chronic tinnitus?

    Get PDF
    Background: Prefrontal and temporo-parietal repetitive transcranial magnetic stimulation (rTMS) in patients suffering from chronic tinnitus have shown significant but only moderate effectiveness with high interindividual variability in treatment response. This open-label pilot study was designed to examine the general feasibility of an individualized fronto-temporal rTMS protocol and to explore what criteria are needed for a more detailed evaluation in randomized clinical studies. Methods: During the first session of a 2-week rTMS protocol, we applied different rTMS protocols to the left and right temporo-parietal and dorsolateral prefrontal cortex (DLPFC) in 25 tinnitus patients. Short trains of 1, 5, 10, and 20 Hz and continuous theta burst stimulation were applied, and patients were asked for immediate tinnitus reductions after each train. If a patient reported such improvements, rTMS treatment was applied over nine sessions with a combined protocol consisting of the most effective frontal and the most effective temporo-parietal stimulation protocol. Those patients who did not improve after the test session were treated with a standard prefrontal plus temporo-parietal protocol (20 Hz over left DLPFC + 1 Hz over temporo-parietal cortex). results: Almost half of the patients (12 of 25) reported immediate tinnitus reductions during the test session. In this group, the mean pre- to post-treatment amelioration in the tinnitus questionnaire was higher (medium to high effect sizes) in contrast to the patients who did not respond to the test session. Treatment outcome remained stable over a follow-up period of 10 weeks. Discussion: Individualized rTMS was shown to be feasible and effective in chronic tinnitus. The results obtained from this study provide tentative evidence in support of an individualized rTMS treatment approach and might provide a basis for a "tailored" application of rTMS in tinnitus and other neuropsychiatric disorders

    Reduced Variability of Auditory Alpha Activity in Chronic Tinnitus

    Get PDF
    Subjective tinnitus is characterized by the conscious perception of a phantom sound which is usually more prominent under silence. Resting state recordings without any auditory stimulation demonstrated a decrease of cortical alpha activity in temporal areas of subjects with an ongoing tinnitus perception. This is often interpreted as an indicator for enhanced excitability of the auditory cortex in tinnitus. In this study we want to further investigate this effect by analysing the moment-to-moment variability of the alpha activity in temporal areas. Magnetoencephalographic resting state recordings of 21 tinnitus subjects and 21 healthy controls were analysed with respect to the mean and the variability of spectral power in the alpha frequency band over temporal areas. A significant decrease of auditory alpha activity was detected for the low alpha frequency band (8-10 Hz) but not for the upper alpha band (10-12 Hz). Furthermore, we found a significant decrease of alpha variability for the tinnitus group. This result was significant for the lower alpha frequency range and not significant for the upper alpha frequencies. Tinnitus subjects with a longer history of tinnitus showed less variability of their auditory alpha activity which might be an indicator for reduced adaptability of the auditory cortex in chronic tinnitus
    corecore