118 research outputs found

    Radiation-hydrodynamical simulations of massive star formation using Monte Carlo radiative transfer - I. Algorithms and numerical methods

    Get PDF
    Copyright © 2015 The Author Published by Oxford University Press on behalf of the Royal Astronomical SocietyWe present a set of new numerical methods that are relevant to calculating radiation pressure terms in hydrodynamics calculations, with a particular focus on massive star formation. The radiation force is determined from a Monte Carlo estimator and enables a complete treatment of the detailed microphysics, including polychromatic radiation and anisotropic scattering, in both the free-streaming and optically thick limits. Since the new method is computationally demanding we have developed two new methods that speed up the algorithm. The first is a photon packet splitting algorithm that enables efficient treatment of the Monte Carlo process in very optically thick regions. The second is a parallelization method that distributes the Monte Carlo workload over many instances of the hydrodynamic domain, resulting in excellent scaling of the radiation step. We also describe the implementation of a sink particle method that enables us to follow the accretion on to, and the growth of, the protostars. We detail the results of extensive testing and benchmarking of the new algorithms.Science & Technology Facilities Council (STFC

    Spectropolarimetry of single and binary stars

    Get PDF
    Spectropolarimetry is a photon-hungry technique that will reach fruition in the 8-m telescope age. Here I summarize some of the stellar spectropolarimetric research that my collaborators and I have undertaken, with particular emphasis on the circumstellar environment of massive stars, symbiotic binaries, and star formation.Comment: 12 pages, 8 Figures, to appear in "Stellar Astrophysics with the World's Largest Telescopes", J. Mikolajewska (ed), to be published by AI

    Radial and rotational velocities of young brown dwarfs and very low-mass stars in the Upper Scorpius OB association and the rho Ophiuchi cloud core

    Get PDF
    We present the results of a radial velocity (RV) survey of 14 brown dwarfs (BDs) and very low-mass (VLM) stars in the Upper Scorpius OB association (UScoOB) and 3 BD candidates in the rho Ophiuchi dark cloud core. We obtained high-resolution echelle spectra at the Very Large Telescope using Ultraviolet and Visual Echelle Spectrograph (UVES) at two different epochs for each object, and measured the shifts in their RVs to identify candidates for binary/multiple systems in the sample. The average time separation of the RV measurements is 21.6d, and our survey is sensitive to the binaries with separation < 0.1 au. We found that 4 out of 17 objects (or 24^{+16}_{-13} per cent by fraction) show a significant RV change in 4-33d time scale, and are considered as binary/multiple `candidates.' We found no double-lined spectroscopic binaries in our sample, based on the shape of cross-correlation curves. The RV dispersion of the objects in UScoOB is found to be very similar to that of the BD and VLM stars in Chamaeleon I (Cha I). We also found the distribution of the mean rotational velocities (v sin i) of the UScoOB objects is similar to that of the Cha I, but the dispersion of v sin i is much larger than that of the Cha I objects.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    Indirect Detection of Forming Protoplanets via Chemical Asymmetries in Disks

    Get PDF
    We examine changes in the molecular abundances resulting from increased heating due to a self-luminous planetary companion embedded within a narrow circumstellar disk gap. Using 3D models that include stellar and planetary irradiation, we find that luminous young planets locally heat up the parent circumstellar disk by many tens of Kelvin, resulting in efficient thermal desorption of molecular species that are otherwise locally frozen out. Furthermore, the heating is deposited over large regions of the disk, ±5\pm5 AU radially and spanning 60\lesssim60^\circ azimuthally. From the 3D chemical models, we compute rotational line emission models and full ALMA simulations, and find that the chemical signatures of the young planet are detectable as chemical asymmetries in 10h\sim10h observations. HCN and its isotopologues are particularly clear tracers of planetary heating for the models considered here, and emission from multiple transitions of the same species is detectable, which encodes temperature information in addition to possible velocity information from the spectra itself. We find submillimeter molecular emission will be a useful tool to study gas giant planet formation in situ, especially beyond R10R\gtrsim10 AU.Comment: 14 pages, 14 figures, accepted for publication in Ap

    Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    Full text link
    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photo-evaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is included as rocket motion is induced over a larger area of the shell surface. The formation and evolution of 'elephant trunks' via instability is also found to vary significantly when the diffuse field is included. Since the perturbations that seed instabilities are smeared out elephant trunks form less readily and, once formed, are exposed to enhanced thermal compression.Comment: Accepted for publication in MNRAS. 19 pages, 14 figures, 8 table

    T Tauri stellar magnetic fields: He I measurements

    Full text link
    We present measurements of the longitudinal magnetic field in the circumstellar environment of seven classical T Tauri stars. The measurements are based on high-resolution circular spectropolarimetry of the He I 5876 emission line, which is thought to form in accretion streams controlled by a stellar magnetosphere. We detect magnetic fields in BP Tau, DF Tau and DN Tau, and detect statistically significant fields in GM Aur and RW Aur A at one epoch but not at others. We detect no field for DG Tau and GG Tau, with the caveat that these objects were observed at one epoch only. Our measurements for BP Tau and DF Tau are consistent, both in terms of sign and magnitude, with previous studies, suggesting that the characteristics of T Tauri magnetospheres are persistent over several years. We observed the magnetic field of BP Tau to decline monotonically over three nights, and have detected a peak field of 4kG in this object, the highest magnetic field yet observed in a T Tauri star. We combine our observations with results from the literature in order to perform a statistical analysis of the magnetospheric fields in BP Tau and DF Tau. Assuming a dipolar field, we determine a polar field of ~3kG and a dipole offset of 40deg for BP Tau, while DF Tau's field is consistent with a polar field of ~-4.5kG and a dipole offset of 10deg. We conclude that many classical T Tauri stars have circumstellar magnetic fields that are both strong enough and sufficiently globally-ordered to sustain large-scale magnetospheric accretion flows.Comment: 8 pages, 3 figures. Accepted by MNRAS. Corrected typo

    What can the SEDs of first hydrostatic core candidates reveal about their nature?

    Get PDF
    The first hydrostatic core (FHSC) is the first stable object to form in simulations of star formation. This stage has yet to be observed definitively, although several candidate FHSCs have been reported. We have produced synthetic spectral energy distributions (SEDs) from 3D hydrodynamical simulations of pre-stellar cores undergoing gravitational collapse for a variety of initial conditions. Variations in the initial rotation rate, radius and mass lead to differences in the location of the SED peak and far-infrared flux. Secondly, we attempt to fit the SEDs of five FHSC candidates from the literature and five newly identified FHSC candidates located in the Serpens South molecular cloud with simulated SEDs. The most promising FHSC candidates are fitted by a limited number of model SEDs with consistent properties, which suggests the SED can be useful for placing constraints on the age and rotation rate of the source. The sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS, Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22, Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates that they are likely to be more evolved.Comment: 26 pages, 28 figures. Accepted for publication in MNRA

    Evidence for high accretion-rates in Weak-Line T Tauri stars?

    Full text link
    We have discovered T Tauri stars which show startling spectral variability between observations seperated by 20 years. In spectra published by Bouvier & Appenzeller (1992) these objects showed very weak H-alpha emission, broad CaII absorption and so called ``composite spectra'', where the spectral type inferred from the blue region is earlier than that inferred from the red. We present here new spectroscopy which shows that all four stars now exhibit strong H-alpha emission, narrow CaII emission and a spectral type which is consistent at all wavelengths. We propose a scheme to understand these changes whereby the composite spectra of these stars can be explained by a period of active accretion onto the central, young star. In this scheme the composite spectrum consists of a contribution from the stellar photosphere and a contribution from a hot, optically thick, accretion component. The optically thick nature of the accretion flow explains the weakness of the H-alpha emission during this phase. Within this scheme, the change to a single spectral type at all wavelengths and emergence of strong H-alpha emission are consistent with the accretion columns becoming optically thin, as the accretion rate drops. There is a strong analogy here with the dwarf novae class of interacting binaries, which show similar behaviour during the decline from outbursts of high mass-transfer rate. The most important consequence of this interpretation is that these objects bring into question the association of Weak-Line T Tauri stars (WTTs) with non-accreting or discless objects. In light of this result we consider the justification for this paradigm.Comment: 6 pages, 3 figures. Accepted for publication in MNRA
    corecore