5 research outputs found

    Inhibitor of apoptosis proteins are potential targets for treatment of granulosa cell tumors - implications from studies in KGN

    Get PDF
    BACKGROUND: Granulosa cell tumors (GCTs) are derived from proliferating granulosa cells of the ovarian follicle. They are known for their late recurrence and most patients with an aggressive form die from their disease. There are no treatment options for this slowly proliferating tumor besides surgery and chemotherapy. In a number of tumors, analogs of the second mitochondria-derived activator of caspases (SMAC), alone or in combination with other molecules, such as TNFα, are evolving as new treatment options. SMAC mimetics block inhibitor of apoptosis proteins (IAPs), which bind caspases (e.g. XIAP), or activate the pro-survival NF-ÎșB pathway (e.g. cIAP1/2). Expression of IAPs by GCTs is yet not fully elucidated but recently XIAP and its inhibition by SMAC mimetics in a combination therapy was described to induce apoptosis in a GCT cell line, KGN. We evaluated the expression of cIAP1 in GCTs and elucidated the effects of the SMAC mimetic BV-6 using KGN as a model. RESULTS: Employing immunohistochemistry, we observed cIAP1 expression in a tissue microarray (TMA) of 42 GCT samples. RT-PCR confirmed expression of cIAP1/2, as well as XIAP, in primary, patient-derived GCTs and in KGN. We therefore tested the ability of the bivalent SMAC mimetic BV-6, which is known to inhibit cIAP1/2 and XIAP, to induce cell death in KGN. A dose response study indicated an EC50 ≈ 8 ΌM for both, early ( 80) passages, which differ in growth rate and presumably aggressiveness. Quantitative RT-PCR showed upregulation of NF-ÎșB regulated genes in BV-6 stimulated cells. Blocking experiments with the pan-caspase inhibitor Z-VAD-FMK indicated caspase-dependence. A concentration of 20 ΌM Z-VAD-FMK was sufficient to significantly reduce apoptosis. This cell death was further substantiated by results of Western Blot studies. Cleaved caspase 3 and cleaved PARP became evident in the BV-6 treated group. CONCLUSIONS: Taken together, the results show that BV-6 is able to induce apoptosis in KGN cells. This approach may therefore offer a promising therapeutic avenue to treat GCTs

    Ca2+ Signaling and IL-8 Secretion in Human Testicular Peritubular Cells Involve the Cation Channel TRPV2

    Get PDF
    Peritubular cells are part of the wall of seminiferous tubules in the human testis and their contractile abilities are important for sperm transport. In addition, they have immunological roles. A proteomic analysis of isolated human testicular peritubular cells (HTPCs) revealed expression of the transient receptor potential channel subfamily V member 2 (TRPV2). This cation channel is linked to mechano-sensation and to immunological processes and inflammation in other organs. We verified expression of TRPV2 in peritubular cells in human sections by immunohistochemistry. It was also found in other testicular cells, including Sertoli cells and interstitial cells. In cultured HTPCs, application of cannabidiol (CBD), a known TRPV2 agonist, acutely induced a transient increase in intracellular Ca2+ levels. These Ca2+ transients could be blocked both by ruthenium red, an unspecific Ca2+ channel blocker, and tranilast (TRA), an antagonist of TRPV2, and were also abolished when extracellular Ca2+ was removed. Taken together this indicates functional TRPV2 channels in peritubular cells. When applied for 24 to 48 h, CBD induced expression of proinflammatory factors. In particular, mRNA and secreted protein levels of the proinflammatory chemokine interleukin-8 (IL-8/CXCL8) were elevated. Via its known roles as a major mediator of the inflammatory response and as an angiogenic factor, this chemokine may play a role in testicular physiology and pathology

    Mimicking tumor cell heterogeneity of colorectal cancer in a patient-derived organoid-fibroblast model

    Get PDF
    Background & Aims: Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. Methods: Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. Results: Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. Conclusion: We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer

    The management of acute venous thromboembolism in clinical practice - study rationale and protocol of the European PREFER in VTE Registry

    Get PDF
    Background: Venous thromboembolism (VTE) is a major health problem, with over one million events every year in Europe. However, there is a paucity of data on the current management in real life, including factors influencing treatment pathways, patient satisfaction, quality of life (QoL), and utilization of health care resources and the corresponding costs. The PREFER in VTE registry has been designed to address this and to understand medical care and needs as well as potential gaps for improvement. Methods/design: The PREFER in VTE registry was a prospective, observational, multicenter study conducted in seven European countries including Austria, France Germany, Italy, Spain, Switzerland, and the UK to assess the characteristics and the management of patients with VTE, the use of health care resources, and to provide data to estimate the costs for 12 months treatment following a first-time and/or recurrent VTE diagnosed in hospitals or specialized or primary care centers. In addition, existing anticoagulant treatment patterns, patient pathways, clinical outcomes, treatment satisfaction, and health related QoL were documented. The centers were chosen to reflect the care environment in which patients with VTE are managed in each of the participating countries. Patients were eligible to be enrolled into the registry if they were at least 18 years old, had a symptomatic, objectively confirmed first time or recurrent acute VTE defined as either distal or proximal deep vein thrombosis, pulmonary embolism or both. After the baseline visit at the time of the acute VTE event, further follow-up documentations occurred at 1, 3, 6 and 12 months. Follow-up data was collected by either routinely scheduled visits or by telephone calls. Results: Overall, 381 centers participated, which enrolled 3,545 patients during an observational period of 1 year. Conclusion: The PREFER in VTE registry will provide valuable insights into the characteristics of patients with VTE and their acute and mid-term management, as well as into drug utilization and the use of health care resources in acute first-time and/or recurrent VTE across Europe in clinical practice. Trial registration: Registered in DRKS register, ID number: DRKS0000479
    corecore