4,270 research outputs found
GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction
In voxel-based neuroimage analysis, lesion features have been the main focus
in disease prediction due to their interpretability with respect to the related
diseases. However, we observe that there exists another type of features
introduced during the preprocessing steps and we call them "\textbf{Procedural
Bias}". Besides, such bias can be leveraged to improve classification accuracy.
Nevertheless, most existing models suffer from either under-fit without
considering procedural bias or poor interpretability without differentiating
such bias from lesion ones. In this paper, a novel dual-task algorithm namely
\emph{GSplit LBI} is proposed to resolve this problem. By introducing an
augmented variable enforced to be structural sparsity with a variable splitting
term, the estimators for prediction and selecting lesion features can be
optimized separately and mutually monitored by each other following an
iterative scheme. Empirical experiments have been evaluated on the Alzheimer's
Disease Neuroimaging Initiative\thinspace(ADNI) database. The advantage of
proposed model is verified by improved stability of selected lesion features
and better classification results.Comment: Conditional Accepted by Miccai,201
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
The affine rank minimization problem consists of finding a matrix of minimum
rank that satisfies a given system of linear equality constraints. Such
problems have appeared in the literature of a diverse set of fields including
system identification and control, Euclidean embedding, and collaborative
filtering. Although specific instances can often be solved with specialized
algorithms, the general affine rank minimization problem is NP-hard. In this
paper, we show that if a certain restricted isometry property holds for the
linear transformation defining the constraints, the minimum rank solution can
be recovered by solving a convex optimization problem, namely the minimization
of the nuclear norm over the given affine space. We present several random
ensembles of equations where the restricted isometry property holds with
overwhelming probability. The techniques used in our analysis have strong
parallels in the compressed sensing framework. We discuss how affine rank
minimization generalizes this pre-existing concept and outline a dictionary
relating concepts from cardinality minimization to those of rank minimization
Simultaneously Sparse Solutions to Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector
A linear inverse problem is proposed that requires the determination of
multiple unknown signal vectors. Each unknown vector passes through a different
system matrix and the results are added to yield a single observation vector.
Given the matrices and lone observation, the objective is to find a
simultaneously sparse set of unknown vectors that solves the system. We will
refer to this as the multiple-system single-output (MSSO) simultaneous sparsity
problem. This manuscript contrasts the MSSO problem with other simultaneous
sparsity problems and conducts a thorough initial exploration of algorithms
with which to solve it. Seven algorithms are formulated that approximately
solve this NP-Hard problem. Three greedy techniques are developed (matching
pursuit, orthogonal matching pursuit, and least squares matching pursuit) along
with four methods based on a convex relaxation (iteratively reweighted least
squares, two forms of iterative shrinkage, and formulation as a second-order
cone program). The algorithms are evaluated across three experiments: the first
and second involve sparsity profile recovery in noiseless and noisy scenarios,
respectively, while the third deals with magnetic resonance imaging
radio-frequency excitation pulse design.Comment: 36 pages; manuscript unchanged from July 21, 2008, except for updated
references; content appears in September 2008 PhD thesi
Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection
We propose a method for detecting significant interactions in very large
multivariate spatial point patterns. This methodology develops high dimensional
data understanding in the point process setting. The method is based on
modelling the patterns using a flexible Gibbs point process model to directly
characterise point-to-point interactions at different spatial scales. By using
the Gibbs framework significant interactions can also be captured at small
scales. Subsequently, the Gibbs point process is fitted using a
pseudo-likelihood approximation, and we select significant interactions
automatically using the group lasso penalty with this likelihood approximation.
Thus we estimate the multivariate interactions stably even in this setting. We
demonstrate the feasibility of the method with a simulation study and show its
power by applying it to a large and complex rainforest plant population data
set of 83 species
Inverse Ising inference using all the data
We show that a method based on logistic regression, using all the data,
solves the inverse Ising problem far better than mean-field calculations
relying only on sample pairwise correlation functions, while still
computationally feasible for hundreds of nodes. The largest improvement in
reconstruction occurs for strong interactions. Using two examples, a diluted
Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that
interaction topologies can be recovered from few samples with good accuracy and
that the use of -regularization is beneficial in this process, pushing
inference abilities further into low-temperature regimes.Comment: 5 pages, 2 figures. Accepted versio
P-values for high-dimensional regression
Assigning significance in high-dimensional regression is challenging. Most
computationally efficient selection algorithms cannot guard against inclusion
of noise variables. Asymptotically valid p-values are not available. An
exception is a recent proposal by Wasserman and Roeder (2008) which splits the
data into two parts. The number of variables is then reduced to a manageable
size using the first split, while classical variable selection techniques can
be applied to the remaining variables, using the data from the second split.
This yields asymptotic error control under minimal conditions. It involves,
however, a one-time random split of the data. Results are sensitive to this
arbitrary choice: it amounts to a `p-value lottery' and makes it difficult to
reproduce results. Here, we show that inference across multiple random splits
can be aggregated, while keeping asymptotic control over the inclusion of noise
variables. We show that the resulting p-values can be used for control of both
family-wise error (FWER) and false discovery rate (FDR). In addition, the
proposed aggregation is shown to improve power while reducing the number of
falsely selected variables substantially.Comment: 25 pages, 4 figure
Quadratic programming and penalized regression
Quadratic programming is a versatile tool for calculating estimates in penalized regression. It can be used to produce estimates based on L1 roughness penalties, as in total variation denoising. In particular, it can calculate estimates when the roughness penalty is the total variation of a derivative of the estimate. Combining two roughness penalties, the total variation and total variation of the third derivative, results in an estimate with continuous second derivative but controls the number of spurious local extreme values. A multiresolution criterion may be included in a quadratic program to achieve local smoothing without having to specify smoothing parameters. Copyright © Taylor & Francis Group, LLC
Analysis of Models for Decentralized and Collaborative AI on Blockchain
Machine learning has recently enabled large advances in artificial
intelligence, but these results can be highly centralized. The large datasets
required are generally proprietary; predictions are often sold on a per-query
basis; and published models can quickly become out of date without effort to
acquire more data and maintain them. Published proposals to provide models and
data for free for certain tasks include Microsoft Research's Decentralized and
Collaborative AI on Blockchain. The framework allows participants to
collaboratively build a dataset and use smart contracts to share a continuously
updated model on a public blockchain. The initial proposal gave an overview of
the framework omitting many details of the models used and the incentive
mechanisms in real world scenarios. In this work, we evaluate the use of
several models and configurations in order to propose best practices when using
the Self-Assessment incentive mechanism so that models can remain accurate and
well-intended participants that submit correct data have the chance to profit.
We have analyzed simulations for each of three models: Perceptron, Na\"ive
Bayes, and a Nearest Centroid Classifier, with three different datasets:
predicting a sport with user activity from Endomondo, sentiment analysis on
movie reviews from IMDB, and determining if a news article is fake. We compare
several factors for each dataset when models are hosted in smart contracts on a
public blockchain: their accuracy over time, balances of a good and bad user,
and transaction costs (or gas) for deploying, updating, collecting refunds, and
collecting rewards. A free and open source implementation for the Ethereum
blockchain and simulations written in Python is provided at
https://github.com/microsoft/0xDeCA10B. This version has updated gas costs
using newer optimizations written after the original publication.Comment: Accepted to ICBC 202
- …