4,270 research outputs found

    GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction

    Full text link
    In voxel-based neuroimage analysis, lesion features have been the main focus in disease prediction due to their interpretability with respect to the related diseases. However, we observe that there exists another type of features introduced during the preprocessing steps and we call them "\textbf{Procedural Bias}". Besides, such bias can be leveraged to improve classification accuracy. Nevertheless, most existing models suffer from either under-fit without considering procedural bias or poor interpretability without differentiating such bias from lesion ones. In this paper, a novel dual-task algorithm namely \emph{GSplit LBI} is proposed to resolve this problem. By introducing an augmented variable enforced to be structural sparsity with a variable splitting term, the estimators for prediction and selecting lesion features can be optimized separately and mutually monitored by each other following an iterative scheme. Empirical experiments have been evaluated on the Alzheimer's Disease Neuroimaging Initiative\thinspace(ADNI) database. The advantage of proposed model is verified by improved stability of selected lesion features and better classification results.Comment: Conditional Accepted by Miccai,201

    Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

    Full text link
    The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization

    Simultaneously Sparse Solutions to Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector

    Full text link
    A linear inverse problem is proposed that requires the determination of multiple unknown signal vectors. Each unknown vector passes through a different system matrix and the results are added to yield a single observation vector. Given the matrices and lone observation, the objective is to find a simultaneously sparse set of unknown vectors that solves the system. We will refer to this as the multiple-system single-output (MSSO) simultaneous sparsity problem. This manuscript contrasts the MSSO problem with other simultaneous sparsity problems and conducts a thorough initial exploration of algorithms with which to solve it. Seven algorithms are formulated that approximately solve this NP-Hard problem. Three greedy techniques are developed (matching pursuit, orthogonal matching pursuit, and least squares matching pursuit) along with four methods based on a convex relaxation (iteratively reweighted least squares, two forms of iterative shrinkage, and formulation as a second-order cone program). The algorithms are evaluated across three experiments: the first and second involve sparsity profile recovery in noiseless and noisy scenarios, respectively, while the third deals with magnetic resonance imaging radio-frequency excitation pulse design.Comment: 36 pages; manuscript unchanged from July 21, 2008, except for updated references; content appears in September 2008 PhD thesi

    Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection

    Get PDF
    We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns using a flexible Gibbs point process model to directly characterise point-to-point interactions at different spatial scales. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted using a pseudo-likelihood approximation, and we select significant interactions automatically using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species

    Inverse Ising inference using all the data

    Full text link
    We show that a method based on logistic regression, using all the data, solves the inverse Ising problem far better than mean-field calculations relying only on sample pairwise correlation functions, while still computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that interaction topologies can be recovered from few samples with good accuracy and that the use of l1l_1-regularization is beneficial in this process, pushing inference abilities further into low-temperature regimes.Comment: 5 pages, 2 figures. Accepted versio

    P-values for high-dimensional regression

    Full text link
    Assigning significance in high-dimensional regression is challenging. Most computationally efficient selection algorithms cannot guard against inclusion of noise variables. Asymptotically valid p-values are not available. An exception is a recent proposal by Wasserman and Roeder (2008) which splits the data into two parts. The number of variables is then reduced to a manageable size using the first split, while classical variable selection techniques can be applied to the remaining variables, using the data from the second split. This yields asymptotic error control under minimal conditions. It involves, however, a one-time random split of the data. Results are sensitive to this arbitrary choice: it amounts to a `p-value lottery' and makes it difficult to reproduce results. Here, we show that inference across multiple random splits can be aggregated, while keeping asymptotic control over the inclusion of noise variables. We show that the resulting p-values can be used for control of both family-wise error (FWER) and false discovery rate (FDR). In addition, the proposed aggregation is shown to improve power while reducing the number of falsely selected variables substantially.Comment: 25 pages, 4 figure

    Quadratic programming and penalized regression

    Get PDF
    Quadratic programming is a versatile tool for calculating estimates in penalized regression. It can be used to produce estimates based on L1 roughness penalties, as in total variation denoising. In particular, it can calculate estimates when the roughness penalty is the total variation of a derivative of the estimate. Combining two roughness penalties, the total variation and total variation of the third derivative, results in an estimate with continuous second derivative but controls the number of spurious local extreme values. A multiresolution criterion may be included in a quadratic program to achieve local smoothing without having to specify smoothing parameters. Copyright © Taylor & Francis Group, LLC

    Analysis of Models for Decentralized and Collaborative AI on Blockchain

    Full text link
    Machine learning has recently enabled large advances in artificial intelligence, but these results can be highly centralized. The large datasets required are generally proprietary; predictions are often sold on a per-query basis; and published models can quickly become out of date without effort to acquire more data and maintain them. Published proposals to provide models and data for free for certain tasks include Microsoft Research's Decentralized and Collaborative AI on Blockchain. The framework allows participants to collaboratively build a dataset and use smart contracts to share a continuously updated model on a public blockchain. The initial proposal gave an overview of the framework omitting many details of the models used and the incentive mechanisms in real world scenarios. In this work, we evaluate the use of several models and configurations in order to propose best practices when using the Self-Assessment incentive mechanism so that models can remain accurate and well-intended participants that submit correct data have the chance to profit. We have analyzed simulations for each of three models: Perceptron, Na\"ive Bayes, and a Nearest Centroid Classifier, with three different datasets: predicting a sport with user activity from Endomondo, sentiment analysis on movie reviews from IMDB, and determining if a news article is fake. We compare several factors for each dataset when models are hosted in smart contracts on a public blockchain: their accuracy over time, balances of a good and bad user, and transaction costs (or gas) for deploying, updating, collecting refunds, and collecting rewards. A free and open source implementation for the Ethereum blockchain and simulations written in Python is provided at https://github.com/microsoft/0xDeCA10B. This version has updated gas costs using newer optimizations written after the original publication.Comment: Accepted to ICBC 202
    • …
    corecore