
Quadratic Programming and Penalised
Regression

Andrew D. A. C. Smith1

1 University of Bristol
Corresponding author: Andrew Smith, University of Bristol, School of Math-
ematics, University Walk, Clifton, Bristol, United Kingdom BS8 1TW
Running title: Quadratic programming and penalised regression

Abstract

Quadratic programming is a versatile tool for calculating estimates in pe-

nalised regression. It can be used to produce estimates based on L1 rough-

ness penalties, as in total variation denoising. In particular, it can calculate

estimates when the roughness penalty is the total variation of a derivative

of the estimate. Combining two roughness penalties, the total variation and

total variation of the third derivative, results in an estimate with continuous

second derivative but controls the number of spurious local extreme values. A

multiresolution criterion may be included in a quadratic program to achieve

local smoothing without having to specify smoothing parameters.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323895728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The problem of regression remains an important aspect of statistics. It is

an appropriate way to make inferences about relationships between vari-

ables. Nonparametric regression is necessary if the relationship cannot be

explained by a small number of parameters. Even the most straightforward

case of nonparametric regression between two continuous variables is not an

easy problem, and remains far from being ‘solved’. There are many different

methods for nonparametric regression and each behaves differently in differ-

ent situations. Three broad categories are: kernel smoothing, wavelets and

penalised regression.

We will focus on nonparametric regression between continuous one-dimensional

response and explanatory variables. All of the methods described below can

be extended to the case of multi-dimensional explanatory variables. Given a

set of response observations y1, . . . , yn corresponding to ordered observations

t1 < · · · < tn, thought to have been generated by the signal plus noise model

yi = f(ti) + εi, i = 1, . . . , n,

we wish to find an estimate, f̂ , of the functional relationship, f , sometimes

called the signal function, between the explanatory variable t and response

variable y. The noise terms εi, for i = 1, . . . , n, are realisations of independent

random variables with zero mean.

When approaching data for the first time, it is a good idea to try several

different methods but not practical to employ every one. It is more convenient

to try a subset of methods with different properties, and one such subset is

2

penalised regression. This is an umbrella term for methods that add a penalty

term, which quantifies the smoothness or sparsity of the estimated signal

function, to the residual sum of squares. A penalised regression estimate is

found by minimising

1

2

n∑
i=1

(yi − f̂(ti))
2 + P (f̂ , λ)

over all possible function f̂ : [t1, tn] → R. This is the sum of the resid-

ual sum of squares, which represents the distance between observation and

estimate, and a roughness penalty, P , which is parameterised by a smooth-

ing parameter, λ. The smoothing parameter controls the tradeoff between

distance and roughness. The quality of the estimate is affected by the na-

ture of the roughness penalty and the norm on which it is based. Below

we will show that quadratic programming can calculate penalised regression

estimates with a variety of roughness penalties, in particular total variation

denoising estimates, which use an L1 penalty.

The quadratic program is a vector optimisation procedure that seeks to

minimise a quadratic term subject to a set of linear constraints. A general

form for a quadratic program is

minx
1
2
xTGx− dTx

subject to ATx ≥ b,
(1)

where d is a vector with the same dimension as x, the Hessian G is a square,

symmetric matrix with number of rows equal to the dimension of x, the

matrix A has the same number of rows as G, and the vector b, together

3

with A, encodes constraints on x. This can be solved in finite time by, for

example, the numerically stable active set algorithm of Goldfarb and Idnani

(1983), which is probably the most frequently implemented algorithm for

solving quadratic programs and is therefore used in the examples below.

In many forms of penalised regression the estimate of the signal function

is defined by its values at the explanatory observations, so it is sufficient to

calculate fi = f̂(ti) for i = 1, . . . , n.

2 Total variation denoising with higher-order

penalties

Total variation denoising is a type of penalised regression in which the rough-

ness penalty is equal to the total variation of the estimated signal function.

The total variation of a function f on the interval [t1, tn] is defined as

sup
N∈N

sup
τ∈T (N)

N−1∑
i=1

|f(τi+1)− f(τi)|

where

T (N) = {τ = (τ1, . . . , τN) : t1 = τ1 < · · · < τN = tn} .

When this is used as a roughness penalty the resulting estimate is a piecewise-

constant function that changes value only at points in a subset of t1, . . . , tn.

Therefore the total variation of the estimated signal function may be ex-

pressed as
∑n−1

i=1 |fi+1 − fi|. Since it employs the L1 norm in the roughness

penalty, total variation denoising may be thought of as a nonparametric ver-

4

sion of the lasso estimator (Tibshirani, 1996) and it hence leads to sparse

estimates. When approaching new data it is possible that the underlying

signal function has a very simple form; sparse estimates can more easily re-

veal this. Furthermore this penalty also reduces the number of local extreme

values in the estimate (Davies and Kovac, 2001). The total variation penalty

may be extended to multi-dimensional explanatory variables, for instance in

image denoising. This was first put forward by Rudin et al. (1992), and fast

algorithms for specific penalties were developed by Chambolle (2004), and

Kovac and Smith (2011). This roughness penalty is readily extendable and

the resulting estimates may be calculated by quadratic programming.

With a one-dimensional explanatory variable, the total variation penalty

can be generalised in two ways: by extending it to higher derivatives of the

estimate, and by adding local smoothing parameters. We will construct a

roughness penalty, PTV(p), that is proportional to the total variation of the

pth derivative of the estimate. The amount of penalisation can be varied

in different locations by using a vector of local smoothing parameters λ =

(λ1, . . . , λn−p−1)
T. The generalised total variation roughness penalty is

PTV(p)(f̂ ;λ) = ‖ diag(λ)Dn−p∆pf‖1

5

where f = (f1, . . . , fn)T,

Dn =



−1 1

−1 1

.

−1 1


is a matrix with n− 1 rows and n columns, and ∆p = T−1p Dn−p+1 · · ·T−11 Dn

with ∆0 = I and Tp = diag
(
(t1+p − t1, t2+p − t2, . . . , tn − tn−p)T

)
.

To include this roughness penalty in a quadratic program, we must in-

troduce a vector v = (v1, . . . , vn−p−1)
T of dummy variables. If v does not

appear anywhere else in the quadratic program, then PTV(p) may be included

in the quadratic program as

λT(2v −Dn−p∆pf) subject to v ≥ 0 and v −Dn−p∆pf ≥ 0.

The residual sum of squares can also be generalised by including indi-

vidual non-negative weights on each observation, contained in the vector

w = (w1, . . . , wn)T. The generalised sum of squares is
∑n

i=1wi(yi−fi)2, which

is equivalent to (y−f)TW (y−f), where y = (y1, . . . , yn)T and W = diag(w).

This is easily included in a quadratic program.

Therefore the estimate may be calculated with a quadratic program (1),

where xT = (fT,vT),

G =

 W 0

0 0

 , d =

 Wy + ∆T
pD

T
n−pλ

−2λ

 , A =

 −∆T
pD

T
n−p 0

I I


6

and b = 0. Quadratic program algorithms typically require G to be posi-

tive definite, which does not hold in the quadratic program above. We can

circumvent this problem by adding a small value to the diagonal entries of

G, for instance 1/1000 times the absolute value of the smallest non-zero el-

ement of G. This does not have a discernable effect on the outcome in any

of the examples given below. Alternatively, the quadratic program (1) has

a dual formulation (Nocedal and Wright, 1999) and in some cases the dual

Hessian matrix is positive definite. When p = 0 the dual formulation for the

quadratic program above is equivalent to the taut string algorithm (Davies

and Kovac, 2001), which is a special case of regression on a graph (Kovac

and Smith, 2011).

Figure 1 shows a sequence of estimates calculated using the quadratic

program above. The example datasets were generated by the Blocks and

Doppler functions (Donoho and Johnstone, 1994) with 500 observations in

each dataset. The explanatory observations were fixed at ti = i/500, for

i = 1, . . . , 500, and Gaussian noise, with zero mean, was added to create

noisy response variables. The standard deviation of the noise is 0.5 in the

Blocks data and 0.05 in the Doppler data. Since the standard deviation is

constant, it is appropriate to use equal weights on each observation. It is

known (Mammen and van de Geer, 1997) that an estimate based on the

roughness penalty PTV(p) will be a piecewise polynomial with continuous

(p−1)th derivative. When p = 0 it can be seen that the estimate is piecewise-

constant, which is appropriate for the Blocks data as the signal function

is piecewise constant. However, for the Doppler data, in which the signal

function is smooth, the estimate ‘staircases’ in an undesirable manner. When

7

p ≥ 2 the estimates appear much smoother, and have continuous derivatives,

which is much more appropriate for the Doppler data. However, the Blocks

estimates exhibit additional, unwanted local extreme values.

3 Combined roughness penalties

3.1 Combining L1 penalties

The different qualities of different total variation roughness penalties have

advantages and disadvantages. When p = 0, and the roughness penalty is

the total variation, then it reduces the number of additional, unwanted local

extreme values. However, the estimate is piecewise-constant and therefore

does not have a smooth appearance. When p = 3, and the roughness penalty

is the total variation of the third derivative, then the estimated signal func-

tion is piecewise-cubic and may be considered to be smooth as it has the same

degree of differentiability as a smoothing spline estimate. However, this esti-

mate often exhibits additional local extreme values. If we have to choose one

roughness penalty then we are forced to choose between these opposing ad-

vantages. However, it is possible to combine both advantages by combining

two roughness penalties. Including the total variation prevents additional lo-

cal extremes, provided the associated smoothing parameter is not too small.

Additionally including the total variation of the third derivative causes the

estimate to have continuous second derivative, again provided the associated

smoothing parameter is not too small. The choice of smoothing parameter

is discussed in Section 4. A similar approach was used by Aldrin (2004) in

8

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●●

●

●
●●●

●
●

●
●

●

●
●
●

●

●●●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●●

●

●
●

●●

●

●

●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●●

●

●
●●●

●
●

●
●

●

●
●
●

●

●●●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●●

●

●
●

●●

●

●

●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●●

●

●
●●●

●
●

●
●

●

●
●
●

●

●●●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●●

●

●
●

●●

●

●

●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●●

●

●
●●●

●
●

●
●

●

●
●
●

●

●●●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●●

●

●
●

●●

●

●

●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Figure 1: Estimates for the Blocks (left) and Doppler (right) data, based on
total variation roughness penalties with (from top to bottom) p = 1, 2, 3, 4.
Smoothing parameters were chosen for illustrative purposes.

9

the case of semiparametric regression.

Therefore we seek to minimise

1

2

n∑
i=1

wi(yi − fi)2 + PTV(0)(f̂ ;λ) + PTV(3)(f̂ ;λ′).

There are separate vectors of smoothing parameters: λ = (λ1, . . . , λn−1)
T for

PTV(0) and λ′ = (λ′1, . . . , λ
′
n−4)

T for PTV(3).

As before, this minimisation problem can be written as a constrained

optimisation problem and hence as a quadratic program. In order to combine

two roughness penalties we require two vectors of dummy variables. The first,

v, has dimension n−1 and the second, v′, has dimension n−4. The estimate

that we seek can be found by minimising the quadratic program (1), where

xT = (fT,vT,v′T),

G =


W 0 0

0 0 0

0 0 0

 , d =


Wy +DT

nλ + ∆T
3D

T
n−3λ

′

−2λ

−2λ′

 ,

A =


−DT

n 0 −∆T
3D

T
n−3 0

I 0 I 0

0 I 0 I


and b = 0.

Examples of this quadratic program, using the Blocks and Doppler datasets

seen in Section 2, are given in Figure 2. The practical outcome is as good

as the theory suggests: both estimates are smooth, due to the inclusion of

10

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●●

●

●
●●●

●
●

●
●

●

●
●
●

●

●●●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●●

●

●
●

●●

●

●

●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Figure 2: Estimates based on combined roughness penalties for the Blocks
(left) and Doppler (right) data. Smoothing parameters were chosen for illus-
trative purposes.

PTV(3) as a roughness penalty, but neither exhibits additional, spurious local

extreme values, due to the inclusion of PTV(0) as a roughness penalty.

Also of note is the estimator obtained by combining the residual sum of

squares with two roughness penalties PTV(p) and PTV(p+1). This is equivalent

to a nonparametric version of the fused lasso (Tibshirani et al., 2005).

3.2 Involving L2 penalties

The estimates above use an L1 penalty for roughness, as a nonparametric

version of the lasso. We can also involve an L2 penalty as well, expressing it,

with local smoothing parameters λ′′ = (λ′′1, . . . , λ
′′
n−p−1)

T, as

PRR(p)(f̂ ,λ
′′) = ‖ diag(λ′′)Dn−p∆pf‖22.

Using this roughness penalty alone is a nonparametric version of ridge re-

gression. The minimiser of
∑n

i=1wi(yi − fi)2 + PRR(p)(f̂ ,λ
′′) may be found

by calculating (W + 2∆T
pD

T
n−p diag(λ′′)2Dn−p∆p)

−1Wy.

11

Alternatively, PRR(p)(f̂ ,λ
′′) can be easily added included in the quadratic

program of Section 2 by replacing W with W + 2∆T
pD

T
n−p diag(λ′′)2Dn−p∆p

in the Hessian matrix G. Making this adjustment to the quadratic program

in Section 2 will find an estimate that minimises

n∑
i=1

wi(yi − fi)2 + PTV(p)(f̂ ,λ) + PRR(p)(f̂ ,λ
′′).

As it combines both L1 and L2 roughness penalties, this is a nonparametric

version of the elastic net (Zou and Hastie, 2005).

4 Multiresolution

It is necessary to make an appropriate choice of smoothing parameter, and

there are several techniques for this. Commonly-used techniques designed for

the selection of a single, global, smoothing parameter are computationally

intensive when generalised to local smoothing parameters. The multireso-

lution criterion (Davies and Kovac, 2001) can be used to aid the choice of

global or local smoothing parameters, without increased complexity for local

smoothing. It acts as a test on the residuals yi− fi and judges whether they

contain any systematic deviations from zero. The residuals are estimates of

the noise terms, εi, therefore if the residuals are considered to behave like

noise then the signal plus noise model is valid and the values fi are appro-

priate estimates of f(ti). If the residuals are considered to contain some of

the signal function then the estimates must be too far from the observations

and hence the smoothing parameter must be too large. Multiresolution tests

12

sums of residuals on intervals at different scales and in different locations, and

can therefore discern specific intervals in which the smoothing parameter is

too large. Through this approach it is possible to choose local smoothing pa-

rameters that lead to appropriate, but locally varying, amounts of smoothing

in different parts of the estimate.

When the noise terms εi are assumed to be independent realisations of

a Gaussian random variable with zero mean and constant variance σ2, then

the multiresolution criterion is

∣∣∣∣∣
∑m

i=l wi(yi − fi)√∑m
i=l w

2
i

∣∣∣∣∣ ≤ σ̂
√

2 log n, (2)

where l = 2J−j(k − 1) + 1 and m = min(2J−jk, n), for j = 0, . . . , J , where

J = dlog2 ne, and k = 1, . . . , d2j−Jne. If
∑m

i=l w
2
i = 0 then the left hand

side of (2) is considered to be 0. This requires an estimate of the noise

variance that is independent of the residuals. One such estimate is based on

the median absolute deviation (MAD):

σ̂ =
median (|yi+1 − yi| : i = 1, . . . , n− 1)√

2Φ−1(3/4)
.

Typically, the multiresolution criterion is implemented with an itera-

tive procedure (Davies and Kovac, 2001; Davies and Meise, 2008), however,

quadratic programming allows a straightforward implementation that makes

it possible to avoid specifying a smoothing parameter but still apply an appro-

priate amount of smoothing. As the multiresolution criterion (2) is a system

of linear inequalities it can be directly incorporated into the quadratic pro-

13

gram. For j = 0, . . . , J and k = 1, . . . , d2j−Jne, we append to the columns

of A the vectors Wcj,k and −Wcj,k and append to b the values

cTj,kW (y − σ̂
√

2 log nw) and cTj,kW (−y − σ̂
√

2 log nw),

where cj,k is a vector of appropriate dimension with ith element equal to

1 if 2J−j(k − 1) + 1 ≤ i ≤ min(2J−jk, n) and 0 otherwise. To obtain as

smooth a fitted function as possible we provide the quadratic program with

a large global smoothing parameter, such that the estimate is a straight line

in the absence of multiresolution. In the presence of the linear constraints

the estimate will be the smoothest function that satisfies (2).

In the case of combined total variation penalties (Section 3.1), we provide

two global smoothing parameters λ and λ′, and have to choose the ratio

λ/λ′, specifying how much we favour a smooth estimate over controlling

local extremes. This should be chosen within a range that ensures that the

estimate will be a straight line in the absence of multiresolution. The specific

value of the ratio may be chosen by cross-validation. Alternatively, a pilot

estimate may be found using total variation denoising, with p = 0, and built-

in multiresolution. The resulting estimate is piecewise-constant but may be

assumed to have the correct number of local extreme values. A pragmatic

approach to setting the value of λ/λ′ is to choose a ratio that gives the same

number of local extreme values. In practice the specific value of this ratio

does not seem to be important; values in [0.5, 2] give no discernable difference

for the examples here.

Figure 3 shows two examples of estimates calculated using a quadratic

14

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●●

●

●
●●●

●
●

●
●

●

●
●
●

●

●●●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●

●●

●

●●

●

●
●

●●

●

●

●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Figure 3: Estimates based on combined roughness penalties, with built-in
multiresolution based on a system of 1001 intervals, for the Blocks (left) and
Doppler (right) data. For each estimate λ = λ′.

program with built-in multiresolution, for the datasets in Figures 1 and 2.

Both estimates are smooth but neither exhibits additional, spurious local ex-

treme values. Furthermore the estimates were calculated without any outside

specification of the smoothing parameters. It is possible to see the effects of

local smoothing in the Doppler estimate: more smoothing has been applied

to the right-hand side of the estimate than to the left-hand side. This is

appropriate as the signal function is more slowly-varying on the right-hand

side than the left-hand side.

5 Discussion

We have seen that it is possible to find estimates based on L1 penalties with-

out having to choose smoothing parameters, and that quadratic program-

ming is a versatile tool for calculating such estimates. The most appropriate

choice of penalty or penalties depends on the qualitative nature of the signal

function. If this can be discerned beforehand then it will inform the choice

15

of penalty. For instance, the discontinuities in the Blocks data above are

evident from a scatterplot, hence it is appropriate to apply total variation as

a roughness penalty. In contrast, a scatterplot of the Doppler data shows the

signal function is continuous and therefore it is more appropriate to apply

a higher-order total variation penalty. Quadratic programming allows these

different estimates with different qualities to be calculated within the same

algorithmic framework.

If the choice of penalty is not clear beforehand, perhaps due to increased

noise in the data, then the combined penalty approach of Section 3.1 may be

used: if the signal function is smooth it can be approximated by a smooth

estimate, but if it has discontinuities it can be estimated without introducing

spurious local extreme values. This should only be used if there is no clear

information available about the nature of the signal function, which is likely

to be a rare occurence.

Estimates based on L2 penalties, such as ridge regression and the elastic

net, can also be incorporated into the quadratic program. Other penalties,

such as L0, may require a different algorithmic approach. Rippe et al. (2012)

discuss P (f̂ , λ) = λ
∑n−1

i=1 |fi+1 − fi|q, where q ∈ [0, 1], for estimating seg-

mentation (changes in the ratio of alleles) in genomic applications. When

q = 0 this estimate may be calculated iteratively without using quadratic

programming algorithms.

Unfortunately the versatility of quadratic programming must be traded

against its computational complexity. The number of calculations performed

during the algorithm of Goldfarb and Idnani (1983), for the quadratic pro-

gram described above, will be O(n3). The taut string algorithm (Davies and

16

Kovac, 2001) can find an estimate in O(n) calculations, but only when the

roughness penalty is PTV(0). It would therefore be beneficial, as further work,

to develop a faster algorithm specifically designed for the quadratic programs

above.

References

Aldrin, M. (2004). Improved predictions penalizing both slope and cur-

vature in additive models. Comput. Stat. Data An. 50:267–284.

Chambolle, A. (2004). An algorithm for total variation minimization and

applications. J. Math. Imaging Vis. 20:89–97.

Davies, P. L., Kovac, A. (2001). Local extremes, runs, strings and mul-

tiresolution. Ann. Statist. 29:1–65.

Davies, P. L., Meise, M. (2008) Approximating data with weighted smooth-

ing splines. J. Nonparametr. Stat. 20:207–228.

Donoho, D. L., Johnstone, I. M. (1994). Ideal spatial adaptation by

wavelet shrinkage. Biometrika 81:425–455.

Goldfarb, D., Idnani, A. (1983). A numerically stable dual method for

solving strictly convex quadratic programs. Math. Program. 49:325–340.

Kovac, A., Smith, A. D. A. C. (2011) Nonparametric regression on a

graph. J. Comput. Graph. Stat. 20:432–447.

Mammen, E., van de Geer, S. (1997). Locally adaptive regression splines.

Ann. Statist. 25:387–413.

Rippe, R. C. A., Meulman, J. J., Eilers, P. H. C. (2012). Visualization of

genomic changes by segmented smoothing using an L0 penalty. PLoS ONE

7:e38230.

17

Rudin, L. I., Osher, S., Fatemi, E. (1992). Nonlinear total variation based

noise removal algorithms. Physica D 60:259–268.

Nocedal, J., Wright, S. J. (1999). Numerical Optimization. New York:

Springer.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.

J. Roy. Stat. Soc. B 58:267–288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K. (2005) Spar-

sity and smoothness via the fused lasso. J. Roy. Stat. Soc. B 67:91–108.

Zou, H., Hastie, T. (2005) Regularization and variable selection via the

elastic net. J. Roy. Stat. Soc. B 67:301–320.

18

