40,213 research outputs found

    Jointly Modeling Topics and Intents with Global Order Structure

    Full text link
    Modeling document structure is of great importance for discourse analysis and related applications. The goal of this research is to capture the document intent structure by modeling documents as a mixture of topic words and rhetorical words. While the topics are relatively unchanged through one document, the rhetorical functions of sentences usually change following certain orders in discourse. We propose GMM-LDA, a topic modeling based Bayesian unsupervised model, to analyze the document intent structure cooperated with order information. Our model is flexible that has the ability to combine the annotations and do supervised learning. Additionally, entropic regularization can be introduced to model the significant divergence between topics and intents. We perform experiments in both unsupervised and supervised settings, results show the superiority of our model over several state-of-the-art baselines.Comment: Accepted by AAAI 201

    Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph

    Full text link
    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hours. Doppler velocities are derived through a single Gaussian fit to the Mg~{\sc{ii}}~k~2796\AA{}~and Si~{\sc{iv}}~1393\AA{}~line profiles. We find coherent and stable red and blue shifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 10410^4 K-10510^5 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.Comment: 14 figures, accepted by Ap

    Electronic, mechanical, and thermodynamic properties of americium dioxide

    Full text link
    By performing density functional theory (DFT) +UU calculations, we systematically study the electronic, mechanical, tensile, and thermodynamic properties of AmO2_{2}. The experimentally observed antiferromagnetic insulating feature [J. Chem. Phys. 63, 3174 (1975)] is successfully reproduced. It is found that the chemical bonding character in AmO2_{2} is similar to that in PuO2_{2}, with smaller charge transfer and stronger covalent interactions between americium and oxygen atoms. The valence band maximum and conduction band minimum are contributed by 2p−5fp-5f hybridized and 5ff electronic states respectively. The elastic constants and various moduli are calculated, which show that AmO2_{2} is less stable against shear forces than PuO2_{2}. The stress-strain relationship of AmO2_{2} is examined along the three low-index directions by employing the first-principles computational tensile test method. It is found that similar to PuO2_{2}, the [100] and [111] directions are the strongest and weakest tensile directions, respectively, but the theoretical tensile strengths of AmO2_{2} are smaller than those of PuO2_{2}. The phonon dispersion curves of AmO2_{2} are calculated and the heat capacities as well as lattice expansion curve are subsequently determined. The lattice thermal conductance of AmO2_{2} is further evaluated and compared with attainable experiments. Our present work integrally reveals various physical properties of AmO2_{2} and can be referenced for technological applications of AmO2_{2} based materials.Comment: 23 pages, 8 figure
    • …
    corecore