11,508 research outputs found
A Variable-Flavour Number Scheme for NNLO
At NNLO it is particularly important to have a Variable-Flavour Number Scheme
(VFNS) to deal with heavy quarks because there are major problems with both the
zero mass variable-flavour number scheme and the fixed-flavour number scheme. I
illustrate these problems and present a general formulation of a
Variable-Flavour Number Scheme (VFNS)for heavy quarks that is explicitly
implemented up to NNLO in the strong coupling constant alpha_S, and may be used
in NNLO global fits for parton distributions. The procedure combines elements
of the ACOT(chi) scheme and the Thorne-Roberts scheme. Despite the fact that at
NNLO the parton distributions are discontinuous as one changes the number of
active quark flavours, all physical quantities are continuous at flavour
transitions and the comparison with data is successful.Comment: 17 pages, 5 figures included as .ps files, uses axodraw. One
additional explanatory sentence after eq. (25). Correction of typos and
updated references. To be published in Phys. Rev.
Black hole quasinormal mode spectroscopy with LISA
The signal-to-noise ratio (SNR) for black hole quasinormal mode sources of
low-frequency gravitational waves is estimated using a Monte Carlo approach
that replaces the all-sky average approximation. We consider an eleven
dimensional parameter space that includes both source and detector parameters.
We find that in the black-hole mass range - the
SNR is significantly higher than the SNR for the all-sky average case, as a
result of the variation of the spin parameter of the sources. This increased
SNR may translate to a higher event rate for the Laser Interferometer Space
Antenna (LISA). We also study the directional dependence of the SNR, show at
which directions in the sky LISA will have greater response, and identify the
LISA blind spots.Comment: 12 pages, 5 figure
Locating the magnetospheric ring current
Protons are studied in the global depression of the earth's horizontal magnetic field. It is shown that 10 to 100 keV protons dominate ring current energetics in two preferred regions of cyclotron instability, which serve as stable trapping boundaries for ring current protons. The only apparent means of removing this stably trapped belt of particles are considered to be by charge exchange interactions, or by outward expansion of the plasmapause to erode the ring current. Both of these processes require about two days, which is the characteristic decay period of the main phase depression. Questions whose answers are necessary to formulate a quantitative theory of geomagnetic storms which relates main phase depression to solar wind parameters are included
Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field
Unstable growth rate of unducted whistler waves propagating at angle to geomagnetic fiel
Magnetospheric electrons
Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence
Investigation and quality assessment of the Past Weather Code from the Integrated Surface Database
Quantitative SYNOP Code weather variables such as rainfall amount, although of high societal and environmental importance, are frequently subject to recording errors and inhomogeneities resulting in uncertain conclusions. Here we assess the viability of the more qualitative Past Weather Code (PWC) for its use in robust climate analysis in the belief that it is less prone to both random and systematic errors. The Past Weather Code data, from a selection of the National Oceanographic and Atmospheric Administration’s Integrated Surface Database (ISD) (4731 sufficiently long stations), is quality assessed by searching for inhomogeneities in station PWC time series, removing the offending stations and averaging the remaining stations into a global gridded dataset. PWCs 6 (Rainfall), 7 (Snowfall) and 9 (Thunderstorms) are found to robustly exhibit seasonal features, e.g. the Indian monsoon and peak Northern Hemispheric winter snowfall. Precipitation responses to the North Atlantic Oscillation are also detected in winter PWC 6 data over Europe
A unified theory of stable auroral red arc formation at the plasmapause
A theory is proposed that SAR-arcs are generated at the plasmapause as a consequence of the turbulent dissipation of ring current energy. During the recovery phase of a geomagnetic storm, the plasmapause expands outward into the symmetric ring current. When the cold plasma densities reach about 100/cu cm, ring current protons become unstable and generate intense ion cyclotron wave turbulence in a narrow region 1/2 earth radius wide (just inside the plasmapause). Approximately one-half of the ring current energy is dissipated into wave turbulence which in turn is absorbed through a Landau resonant interaction with plasma spheric electrons. The combined thermal heat flux to the ionosphere due to Landau absorption of the wave energy and proton-electron Coulomb dissipation is sufficient to drive SAR-arcs at the observed intensities. It is predicted that the arcs should be localized to a narrow latitudinal range just within the stormtime plasmapause. They should occur at all local times and persist for the 10 to 20 hour duration of the plasma-pause expansion
Universal properties of the near-horizon optical geometry
We make use of the fact that the optical geometry near a static
non-degenerate Killing horizon is asymptotically hyperbolic to investigate
universal features of black hole physics. We show how the Gauss-Bonnet theorem
allows certain lensing scenarios to be ruled in or out. We find rates for the
loss of scalar, vector and fermionic `hair' as objects fall quasi- statically
towards the horizon. In the process we find the Lienard-Wiechert potential for
hyperbolic space and calculate the force between electrons mediated by
neutrinos, extending the flat space result of Feinberg and Sucher. We use the
enhanced conformal symmetry of the Schwarzschild and Reissner-Nordstrom
backgrounds to re-derive the electrostatic field due to a point charge in a
simple fashion
Technical Brief 5: Intentional Site Burial: A Technique to Protect against Natural or Mechanical Loss
Introduction
Design of an Effective Project
Evaluation of Site Components
Measurement Of Impacts And Setting Goals For Protection
Decay Processes
Benefits of Intentional Site Burial
Project Methods and Procedures
Request for Assistance
Archeological Site Stabilization Bibliography
References Cited
Annotated Bibliograph
- …