59 research outputs found

    Expression of miR-206 in human islets and its role in glucokinase regulation

    Get PDF
    Inappropriate insulin secretion from β-cells is considered as an early sign of impaired glucose tolerance and type 2 diabetes (T2D). Glucokinase (GCK) is an important enzyme that regulates glucose metabolism and ensures that the normal circulating glucose concentrations are maintained. GCK expression is induced by glucose and regulated via transcription factors and regulatory proteins. Recently, microRNA-206 (miR-206) was reported to regulate GCK and alter glucose tolerance in normal and high-fat diet-fed mice. Although the study findings have implications for human diabetes, studies in human islets are lacking. Here, we analyze human islets from individuals without or with T2D, using TaqMan-based real-time qPCR at the tissue (isolated islet) level as well as at single cell resolution, to assess the relationship between miR-206 and GCK expression in normal and T2D human islets. Our data suggest that, unlike mouse islets, human islets do not exhibit any correlation between miR-206 and GCK transcripts. These data implicate the need for further studies aimed toward exploring its potential role(s) in human islets

    Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstratedthat heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shownto be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intraislet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxideinduced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/ heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.: This work was supported by a National Health and Medical Research Council of Australia (NHMRC; https://www.nhmrc.gov.au/)/Juvenile Diabetes Research Foundation (JDRF) Special Program Grant in Type 1 Diabetes (#418138), The Canberra Hospital Private Practice Fund (http:// www.health.act.gov.au/research-publications/research/ppf-major-grants), JDRF nPOD Research Grant (#25-2010-716; http://www.jdrf.org), JDRF Research Grant (#47-2012-746) and NHMRC Project Grant (#1043284

    A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy

    Get PDF
    MicroRNAs are now increasingly recognized as biomarkers of disease progression. Several quantitative real-time PCR (qPCR) platforms have been developed to determine the relative levels of microRNAs in biological fluids. We systematically compared the detection of cellular and circulating microRNA using a standard 96-well platform, a high-content microfluidics platform and two ultrahigh content platforms. We used extensive analytical tools to compute inter- and intra-run variability and concordance measured using fidelity scoring, coefficient of variation and cluster analysis. We carried out unprejudiced next generation sequencing to identify a microRNA signature for Diabetic Retinopathy (DR) and systematically assessed the validation of this signature on clinical samples using each of the above four qPCR platforms. The results indicate that sensitivity to measure low copy number microRNAs is inversely related to qPCR reaction volume and that the choice of platform for microRNA biomarker validation should be made based on the abundance of miRNAs of interest

    Case report: hypoglycemia due to a novel activating glucokinase variant in an adult – a molecular approach

    Get PDF
    We present a case of an obese 22-year-old man with activating GCK variant who had neonatal hypoglycemia, re-emerging with hypoglycemia later in life. We investigated him for asymptomatic hypoglycemia with a family history of hypoglycemia. Genetic testing yielded a novel GCK missense class 3 variant that was subsequently found in his mother, sister and nephew and reclassified as a class 4 likely pathogenic variant. Glucokinase enables phosphorylation of glucose, the rate-limiting step of glycolysis in the liver and pancreatic β cells. It plays a crucial role in the regulation of insulin secretion. Inactivating variants in GCK cause hyperglycemia and activating variants cause hypoglycemia. Spleen-preserving distal pancreatectomy revealed diffuse hyperplastic islets, nuclear pleomorphism and periductular islets. Glucose stimulated insulin secretion revealed increased insulin secretion in response to glucose. Cytoplasmic calcium, which triggers exocytosis of insulin-containing granules, revealed normal basal but increased glucose-stimulated level. Unbiased gene expression analysis using 10X single cell sequencing revealed upregulated INS and CKB genes and downregulated DLK1 and NPY genes in β-cells. Further studies are required to see if alteration in expression of these genes plays a role in the metabolic and histological phenotype associated with glucokinase pathogenic variant. There were more large islets in the patient’s pancreas than in control subjects but there was no difference in the proportion of β cells in the islets. His hypoglycemia was persistent after pancreatectomy, was refractory to diazoxide and improved with pasireotide. This case highlights the variable phenotype of GCK mutations. In-depth molecular analyses in the islets have revealed possible mechanisms for hyperplastic islets and insulin hypersecretion

    HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells

    Get PDF
    Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe morbidity in 3–5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαβ clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαβ clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases

    Australia and New Zealand Islet and Pancreas Transplant Registry Annual Report 2018—Islet Donations, Islet Isolations, and Islet Transplants

    Get PDF
    Background. This is an excerpt from chapter 4 of the annual registry report from the Australia and New Zealand islet and pan- creas transplant registry. The full report is available at http://anziptr.org/reports/. Methods. We report data for all allogeneic islet isolation and transplant activity from 2002 to end 2017. Solid organ pancreas transplantation activity is reported separately. New Zealand does not have an islet transplant program. Data analysis was performed using Stata software version 14 (StataCorp, College Station, TX). Results. From 2002 to 2017, a total of 104 allogeneic islet transplants were performed in 62 recipients. Conclusions. The number of islet transplants performed in Australia was slightly lower in 2017 but continues to increase over time

    Oxygen-permeable microwell device maintains islet mass and integrity during shipping

    Get PDF
    Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20-40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping.Darling M Rojas-Canales, Michaela Waibel, Aurelien Forget, Daniella Penko, Jodie Nitschke, Fran J Harding, Bahman Delalat, Anton Blencowe, Thomas Loudovaris, Shane T Grey, Helen E Thomas, Thomas W H Kay, Chris J Drogemuller, Nicolas H Voelcker, and Patrick T Coate

    Desmoglein-2 is Important for Islet Function and β-Cell Survival

    Get PDF
    Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells. Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports β-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing β-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg

    Day-4 Myeloid Dendritic Cells Pulsed with Whole Tumor Lysate Are Highly Immunogenic and Elicit Potent Anti-Tumor Responses

    Get PDF
    “Day-7” myeloid DCs are commonly used in the clinic. However, there is a strong need to develop DCs faster that have the same potent immunostimulatory capacity as “Day-7” myeloid DCs and at the same time minimizing time, labor and cost of DC preparations. Although “2 days” DCs can elicit peptide-specific responses, they have not been demonstrated to engulf, process and present complex whole tumor lysates, which could be more convenient and personalized source of tumor antigens than defined peptides. In this preclinical study, we evaluated the T-cell stimulatory capacity of Day-2, Day-4, and Day-7 cultured monocyte-derived DCs loaded with SKOV3 cell whole lysate prepared by freeze-thaw or by UVB-irradiation followed by freeze-thaw, and matured with lipopolysaccharide (LPS) and interferon (IFN)-gamma. DCs were evaluated for antigen uptake, and following maturation with LPS and IFN-gamma, DCs were assessed for expression of CD80, CD40, CD86, ICAM-1 and CCR7, production of IL-12p70 and IP-10, and induction of tumor-specific T-cell responses. Day-4 and Day-7 DCs exhibited similar phagocytic abilities, which were superior to Day-2 DCs. Mature Day-7 DCs expressed the highest CD40 and ICAM-1, but mature Day-4 DCs produced the most IL-12p70 and IP-10. Importantly, Day-4 and Day-7 DCs derived from ovarian cancer patients stimulated equally strongly tumor-specific T-cell responses. This is the first study demonstrating the highly immunogenic and strong T-cell stimulatory properties of Day-4 myeloid DCs, and provided important preclinical data for rapid development of potent whole tumor lysate-loaded DC vaccines that are applicable to many tumor types

    Human CD8+ T cell cross-reactivity across influenza A, B and C viruses

    Get PDF
    Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines
    corecore