427 research outputs found

    Zooplankton body composition

    Get PDF

    Planktivorous feeding in calm and turbulent environments, with emphasis on copepods

    Get PDF
    11 pages, 2 figures, 2 tablesTurbulence may enhance contact rates between planktonic predators and their prey. We formulate simple and general models of prey encounter rates, taking into account the behaviours and motility patterns of both prey and predator as well as turbulent fluid motion. Using these models we determine the levels of turbulence (as dissipation rate) at which ambient fluid motion is important in enhancing prey encounter rates for various types of predators (e.g. ambush and cruise predators, suspension feeders). Generally, turbulence has the largest effect on prey encounters for predators with low motility and long reaction distances. Also, turbulence is most important for meso-sized (mm to cm) predators and insignificant for smaller and larger predators. The effect of turbulence on copepods is specifically examined. For copepods that establish feeding currents, turbulence is of minor importance; for ambush feeding copepods, such as Acartidae and many cyclopoids, turbulence has a dominant influence on prey encounter rates. The effect on cruising predators is intermediate. Application of the models to situations examined experimentally demonstrates a high predictive performance. Finally we explore and model the potentially negative effects of turbulence on copepod feeding currents, prey perception and capture success. At typical and even high turbulent intensities, none of these is significantly affectedPeer Reviewe

    Quantifying interspecific coagulation efficiency of phytoplankton

    Get PDF

    Contribution to the Themed Section: Scaling from individual plankton to marine ecosystems HORIZONS Small bugs with a big impact: linking plankton ecology with ecosystem processes

    Get PDF
    As an introduction to the following Themed Section on the significance of planktonic organisms to the functioning of marine ecosystems and global biogeochemical cycles we discuss the ramifications size imparts on the biology of plankton. We provide examples of how the characteristics of these microscopic organisms shape plankton population dynamics, distributions, and ecosystem functions. Key features of the marine environment place constraints on the ecology and evolution of plankton. Understanding these constraints is critical in developing a mechanistic understanding and predictive capacity of how planktonic ecosystems function, render their capacities in terms of biogeochemical cycling and trophic transfer, and how planktonic communities might respond to changing climate conditions

    Data compilation of respiration, feeding, and growth rates of marine pelagic organisms

    Get PDF
    The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality
    • …
    corecore