5,320 research outputs found
An Alternative Accurate Tracer of Molecular Clouds: The "-Factor"
We explore the utility of CI as an alternative high-fidelity gas mass tracer
for Galactic molecular clouds. We evaluate the X-factor for the 609
m carbon line, the analog of the CO X-factor, which is the ratio of the
H column density to the integrated CO(1-0) line intensity. We use
3D-PDR to post-process hydrodynamic simulations of turbulent, star-forming
clouds. We compare the emission of CI and CO for model clouds irradiated by 1
and 10 times the average background and demonstrate that CI is a comparable or
superior tracer of the molecular gas distribution for column densities up to cm. Our results hold for both reduced and full chemical
networks. For our fiducial Galactic cloud we derive an average of
cmKkms and of cmKkms.Comment: 5 pages, 4 figures, 1 table, accepted to MNRAS Letter
The Relationship Between Interleukin-6 in Saliva, Venous and Capillary Plasma, at Rest and in Response to Exercise
IL-6 plays a mechanistic role in conditions such as metabolic syndrome, chronic fatigue syndrome and clinical depression and also plays a major role in inflammatory and immune responses to exercise. The purpose of this study was to investigate the levels of resting and post exercise IL-6 when measured in venous plasma, saliva and capillary plasma. Five male and five females completed 2 separate exercise trials, both of which involved standardized exercise sessions on a cycle ergometer. Venous blood and saliva samples were taken immediately before and after Trial A, venous and capillary blood samples were taken immediately before and after Trial B. IL-6 values were obtained using a high-sensitivity enzyme-linked immunosorbent assay (ELISA). In Trial A venous plasma IL-6 increased significantly from 0.4. 0.14. pg/ml to 0.99 0.29. pg/ml (. P<. 0.01) while there was no increase in salivary IL-6. Venous plasma and salivary IL-6 responses were not correlated at rest, post exercise or when expressed as an exercise induced change. In Trial B venous and capillary plasma IL-6 increased significantly (venous: 0.22. ±. 0.18 to 0.74. ±. 0.28. pg/ml; capillary: 0.37. ±. 0.22 to 1.08. ±. 0.30. pg/ml (. P<. 0.01). Venous and capillary plasma responses did not correlate at rest (. r=. 0.59, P=. 0.07) but did correlate post exercise (. r=. 0.79) and when expressed as an exercise induced change (. r=. 0.71, P=. 0.02). Saliva does not appear to reflect systemic IL-6 responses, either at rest or in response to exercise. Conversely, capillary plasma responses are reflective of systemic IL-6 responses to exercise. © 2014 Elsevier Ltd
Improving Loss Estimation for Woodframe Buildings. Volume 2: Appendices
This report documents Tasks 4.1 and 4.5 of the CUREE-Caltech Woodframe Project. It presents a theoretical and empirical methodology for creating probabilistic relationships between seismic shaking severity and physical damage and loss for buildings in general, and for woodframe buildings in particular. The methodology, called assembly-based vulnerability (ABV), is illustrated for 19 specific woodframe buildings of varying ages, sizes, configuration, quality of construction, and retrofit and redesign conditions. The study employs variations on four basic floorplans, called index buildings. These include a small house and a large house, a townhouse and an apartment building. The resulting seismic vulnerability functions give the probability distribution of repair cost as a function of instrumental ground-motion severity. These vulnerability functions are useful by themselves, and are also transformed to seismic fragility functions compatible with the HAZUS software.
The methods and data employed here use well-accepted structural engineering techniques, laboratory test data and computer programs produced by Element 1 of the CUREE-Caltech Woodframe Project, other recently published research, and standard construction cost-estimating methods. While based on such well established principles, this report represents a substantially new contribution to the field of earthquake loss estimation. Its methodology is notable in that it calculates detailed structural response using nonlinear time-history structural analysis as opposed to the simplifying assumptions required by nonlinear pushover methods. It models physical damage at the level of individual building assemblies such as individual windows, segments of wall, etc., for which detailed laboratory testing is available, as opposed to two or three broad component categories that cannot be directly tested. And it explicitly models uncertainty in ground motion, structural response, component damageability, and contractor costs. Consequently, a very detailed, verifiable, probabilistic picture of physical performance and repair cost is produced, capable of informing a variety of decisions regarding seismic retrofit, code development, code enforcement, performance-based design for above-code applications, and insurance practices
Prospectus, September 5, 1979
ACTIVITIES DAY -- A PICTURESQUE SCENE; C-U Cablevision arrives; Common names red-tape; Neal gives advice to new internationals; Latest minority receives attention; \u27Forum\u27 to hold first meeting; One-man exhibit; Chaotic Climax to \u27Fall Chaos\u27; Classified Advertising; Top 10 List from WPCD Radio; Family Services meets weekly -- Sept. 19; Single Parent Shop; Mathphobia; Notice: Application dates for future U. of I. D. V. M.\u27s; Latest registration total; Painting Presented; Prairie Fall Century set; Pragler named coach; Sports meetings upcoming; Freddy fumbles opener, hopes for bright results; Fast Freddy Contesthttps://spark.parkland.edu/prospectus_1979/1014/thumbnail.jp
The Parasitome of the Phytonematode Heterodera glycines
Parasitism genes expressed in the esophageal gland cells of phytonematodes encode secretions that control the complex process of plant parasitism. In the soybean cyst nematode, Heterodera glycines, the parasitome, i.e., the secreted products of parasitism genes, facilitate nematode migration in soybean roots and mediate the modification of root cells into elaborate feeding cells required to support the growth and development of the nematode. With very few exceptions, the identities of these secretions are unknown, and the mechanisms of cyst nematode parasitism, therefore, remain obscure. The most direct and efficient approach for cloning parasitism genes and rapidly advancing our understanding of the molecular interactions during nematode parasitism of plants is to create gland cell-specific cDNA libraries using cytoplasm microaspirated from the esophageal gland cells of various parasitic stages. By combining expressed sequence tag analysis of a gland cell cDNA library with high throughput in situ expression localization of clones encoding secretory proteins, we obtained the first comprehensive parasitome profile for a parasitic nematode. We identified 51 new H. glycines gland-expressed candidate parasitism genes, of which 38 genes constitute completely novel sequences. Individual parasitome members showed distinct gland cell expression patterns throughout the parasitic cycle. The parasitome complexity discovered paints a more elaborate picture of host cellular events under specific control by the nematode parasite than previously hypothesized
Identification of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Soybean Cyst Nematode Heterodera glycines
Cloning parasitism genes encoding secretory proteins expressed in the esophageal gland cells is the key to understanding the molecular basis of nematode parasitism of plants. Suppression subtractive hybridization (SSH) with the microaspirated contents from Heterodera glycines esophageal gland cells and intestinal region was used to isolate genes expressed preferentially in the gland cells of parasitic stages. Twenty-three unique cDNA sequences from a SSH cDNA library were identified and hybridized to the genomic DNA of H. glycines in Southern blots. Full-length cDNAs of 21 clones were obtained by screening a gland-cell long-distance polymerase chain reaction cDNA library. Deduced proteins of 10 clones were preceded by a signal peptide for secretion, and PSORT II computer analysis predicted eight proteins as extracellular, one as nuclear, and one as plasmalemma localized. In situ hybridization showed that four of the predicted extracellular clones were expressed specifically in the dorsal gland cell, one in the subventral gland cells, and three in the intestine in H. glycines. The predicted nuclear clone and the plasmalemma-localized clone were expressed in the subventral gland cells and the dorsal gland cell, respectively. SSH is an efficient method for cloning putative parasitism genes encoding esophageal gland cell secretory proteins that may have a role in H. glycines parasitism of soybean
The Zwicky Transient Facility: Surveys and Scheduler
We present a novel algorithm for scheduling the observations of time-domain
imaging surveys. Our Integer Linear Programming approach optimizes an observing
plan for an entire night by assigning targets to temporal blocks, enabling
strict control of the number of exposures obtained per field and minimizing
filter changes. A subsequent optimization step minimizes slew times between
each observation. Our optimization metric self-consistently weights
contributions from time-varying airmass, seeing, and sky brightness to maximize
the transient discovery rate. We describe the implementation of this algorithm
on the surveys of the Zwicky Transient Facility and present its on-sky
performance.Comment: Published in PASP Focus Issue on the Zwicky Transient Facility
(https://dx.doi.org/10.1088/1538-3873/ab0c2a). 13 Pages, 11 Figure
A Profile of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Root-knot Nematode Meloidogyne incognita
Identifying parasitism genes encoding proteins secreted from a nematode\u27s esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Meloidogyne incognita parasitism genes were cloned by microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. Of 2,452 cDNA clones sequenced, deduced protein sequences of 185 cDNAs had a signal peptide for secretion and, thus, could have a role in root-knot nematode parasitism of plants. High-throughput in situ hybridization with cDNA clones encoding signal peptides resulted in probes of 37 unique clones specifically hybridizing to transcripts accumulating within the subventral (13 clones) or dorsal (24 clones) esophageal gland cells of M. incognita. In BLASTP analyses, 73% of the predicted proteins were novel proteins. Those with similarities to known proteins included a pectate lyase, acid phosphatase, and hypothetical proteins from other organisms. Our cell-specific analysis of genes encoding secretory proteins provided, for the first time, a profile of putative parasitism genes expressed in the M. incognita esophageal gland cells throughout the parasitic cycle
- …