5,757 research outputs found

    Population and Per Capita Income for Ohio Incorporated Places, 1980-1988: Reference Tables

    Get PDF

    The Rural Turnaround in Ohio: 1970 to 1975

    Get PDF

    Population by Race for Ohio Counties, 1990

    Get PDF

    Population and Per Capita Income for Ohio Counties, 1980-1988: Reference Tables

    Get PDF

    Rural and Urban Population for Ohio Counties, 1990

    Get PDF

    Autonomous RPRV Navigation, Guidance and Control

    Get PDF
    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described

    Army ants algorithm for rare event sampling of delocalized nonadiabatic transitions by trajectory surface hopping and the estimation of sampling errors by the bootstrap method

    Get PDF
    The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory surface hopping (TSH) calculations is the so-called anteater algorithm, which is inefficient for sampling low-probability nonadiabatic events. We present a new sampling scheme (called the army ants algorithm) for carrying out TSH calculations that is applicable to systems with any strength of coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm can be reduced to the anteater algorithm (which is efficient for strongly coupled cases), and by optimizing the parameter the army ants algorithm may be efficiently applied to systems with low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed atom–diatom scattering calculations on a model system involving weakly coupled electronic states. Fully converged quantum mechanical calculations were performed, and the probabilities for nonadiabatic reaction and nonreactive deexcitation (quenching) were found to be on the order of 10^–8. For such low-probability events the anteater sampling scheme requires a large number of trajectories (~10^10) to obtain good statistics and converged semiclassical results. In contrast by using the new army ants algorithm converged results were obtained by running 10^5 trajectories. Furthermore, the results were found to be in excellent agreement with the quantum mechanical results. Sampling errors were estimated using the bootstrap method, which is validated for use with the army ants algorithm

    Distribution, movements, and habitat use of small striped bass (Morone saxatilis) across multiple spatial scales

    Get PDF
    Distribution, movements, and habitat use of small (<46 cm, juveniles and individuals of unknown maturity) striped bass (Morone saxatilis) were investigated with multiple techniques and at multiple spatial scales (surveys and tag-recapture in the estuary and ocean, and telemetry in the estuary) over multiple years to determine the frequency and duration of use of non-natal estuaries. These unique comparisons suggest, at least in New Jersey, that smaller individuals (<20 cm) may disperse from natal estuaries and arrive in non-natal estuaries early in life and take up residence for several years. During this period of estuarine residence, individuals spend all seasons primarily in the low salinity portions of the estuary. At larger sizes, they then leave these non-natal estuaries to begin coastal migrations with those individuals from nurseries in natal estuaries. These composite observations of frequency and duration of habitat use indicate that non-natal estuaries may provide important habitat for a portion of the striped bass population
    • …
    corecore