469 research outputs found
Smallholder Farmer Innovation and Contexts in Maize-Based Conservation Agriculture Systems in Central Malawi
The increased threat of food insecurity and climate change requires more sustainable ways of agriculture intensification in African smallholder farming systems. Ample evidence confirms that maize-based conservation agriculture (CA) systems lead to increased soil health and yield enhancement yet their overall uptake remains low in Africa. An array of studies on challenges and solutions to CA systems conducted in southern Africa principally focussed on the views of scientists, often neglecting the views of CA farmers. Therefore, this study assessed farmer decision making, innovation and contexts during implementation of maize-based CA systems in communities of central Malawi. A survey involving interviews with 226 CA farmers was deployed, triangulated with key informants comprising extension workers and policy makers. The study showed that about 58% of smallholder farmers did not adapt CA practices to their circumstances because they were strictly following change agentsâ recommendations. The major challenge noted was competition for crop residues due to mice hunters and grazing livestock. Local by-laws initiated by the communities have started to privatise the crop residues and its grazing. However, other innovations were often not documented by extension workers, consequently neglecting more than half of the potential solutions provided by farmers. The establishments of a National Conservation Agriculture Task Force and CA guidelines are positive developments for coordination of stakeholders and harmonisation of CA messages in Malawi. However, for greater adoption, non-linear interaction and learning must be encouraged in practice by fully embracing innovative farmers and the voices of the pool of stakeholders with varying experiences
Occurrence and diversity of arbuscular mycorrhizal fungi colonising offâseason and inâseason weeds and their relationship with maize yield under conservation agriculture
Weeds are responsible for major crop losses worldwide but can provide beneficial agroecosystem services. This study aimed to elucidate how arbuscular mycorrhizal fungi (AMF) in weeds respond to host identity and conservation agricultural practices. The study was carried out at two locations in Southern Africa during off-season and in-season maize cultivation. Off-season AMF root colonisation, diversity indices and community composition significantly differed among weed species at both locations. Glomus sp. VTX00280 explains most of the AMF community differences. In-season, implementation of conventional tillage with mulching alone (CT + M) or together with crop rotation (CT + M + R) resulted in a 20% increase in AMF colonisation of the constantly occurring weed species, Bidens pilosa (BIDPI) and Richardia scabra (RCHSC), com- pared with conventional tillage plus rotations (CT + R). The diversity of AMF was highest under no-tillage plus mulching (NT + M). Off-season and in-season AMF structures of both BIDPI and RCHSC were not related, but 39% of the taxa were shared. Structural equation modelling showed a significant effect of the cropping system on weed AMF diversity parameters and weed and maize root colonisation, but no significant influence of weed root AMF traits and maize colonisation was detected on maize yield. This may be explained by the improvement in weed competitive ability, which may have offset the AMF-mediated benefits on yield. Our findings highlight that implementing M and CR to CT and NT positively affected weed AMF colonisation and diversity. The similarity between the off-season and in-season AMF composition of weeds supports the fact that weeds functionally host AMF during the non-crop period
Prenatal mechanistic target of rapamycin complex 1 (mTORC1) inhibition by rapamycin treatment of pregnant mice causes intrauterine growth restriction and alters postnatal cardiac growth, morphology, and function
BACKGROUND: Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth.
METHODS AND RESULTS: We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling.
CONCLUSIONS: Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth
Autonomic cardiac control in animal models of cardiovascular diseases II. Variability analysis in transgenic rats with alpha-tropomyosin mutations Asp175Asn and Glu180Gly
Animal models of cardiovascular diseases allow to investigate relevant pathogenetic mechanisms in detail. In the present study, the mutations Asp175Asn and Glu180Gly in alpha-tropomyosin (TPM1), known cause familiar hypertrophic cardiomyopathy (FHC) were studied for changes in hemodynamic parameters and spontaneous baroreflex regulation in transgenic rats in comparison to transgenic and non-transgenic controls by telemetry. Heart rate variability (HRV) and blood pressure variability (BPV) were analyzed using time- and frequency domain, as well as non-linear measures. The dual sequence method was used for the estimation of the baroreflex regulation. In transgenic rats harboring mutated TPM1, changes in HRV were detected during exercise, but not at rest. Both mutations, Asp175Asn and Glu180Gly, caused increased low frequency power. In addition, in animals with mutation Asp175Asn a reduced total HRV was observed. BPV did not show any differences between all transgenic animal lines. During exercise, a strong increase in the number of bradycardic and tachycardic fluctuations accompanied with decreased baroreflex sensitivity (BRS) was detected in animals with either TPM1 mutation, Asp175Asn or Glu180Gly. These data suggest, that the analysis of cardiac autonomic control, particularly of baroreflex regulation, represents a powerful non-invasive approach to investigate the effects of subtle changes in sarcomeric architecture on cardiac physiology in vivo. In case of mutations Asp175Asn or Glu180Gly in TPM1, early detection of alterations in autonomic cardiac control could help to prevent sudden cardiac death in affected persons
Dietary protein restriction throughout intrauterine and postnatal life results in potentially beneficial myocardial tissue remodeling in the adult mouse heart
Diet composition impacts metabolic and cardiovascular health with high caloric diets contributing to obesity related disorders. Dietary interventions such as caloric restriction exert beneficial effects in the cardiovascular system, but alteration of which specific nutrient is responsible is less clear. This study investigates the effects of a low protein diet (LPD) on morphology, tissue composition and function of the neonatal and adult mouse heart. Mice were subjected to LPD (8.8% protein) or standard protein diet (SPD, 22% protein) throughout intrauterine and postnatal life. At birth LPD female but not male offspring exhibit reduced body weight whereas heart weight was unchanged in both sexes. Cardiomyocyte cross sectional area was increased in newborn LPD females compared to SPD, whereas proliferation, cellular tissue composition and vascularization were unaffected. Adult female mice on LPD exhibit reduced body weight but normal heart weight compared to SPD controls. Echocardiography revealed normal left ventricular contractility in LPD animals. Histology showed reduced interstitial fibrosis, lower cardiomyocyte volume and elevated numbers of cardiomyocyte and non-myocyte nuclei per tissue area in adult LPD versus SPD myocardium. Furthermore, capillary density was increased in LPD hearts. In conclusion, pre- and postnatal dietary protein restriction in mice causes a potentially beneficial myocardial remodeling
Soil moisture content and maize grain yield under conventional and conservation agriculture practices - results of short term field tests in liselo, Namibia
This article focuses on the results from trials developed to monitor the short-term effects of conventionally tilled systems versus CA on soil quality and crop productivity under conditions of the major cropping systems in central, north-central and north-eastern regions of Namibia. Conventional tillage (CT), Minimum tillage (MT), Minimum tillage, mulch (MT-M), Minimum tillage, rotation (MT-R) and Minimum tillage, mulch and rotation (MT-MR) were the primary treatments tested. Significant differences (pâ€0.000) among the treatments were observed in the 0-60 cm soil profiles where MT-M plots had the highest soil moisture content (39.8 mm, Standard Error of Mean 0.2815) over the study period. A significant difference (p=0.0206) in grain yield was observed in the second season with CT plots yielding the highest grain yield (3852.3 kg ha-1, standard error of mean 240.35). Results suggest that CA has the potential to increase water conservation and contribute to reduction of the risk of crop failure. Climate change driven degradation under conventional tillage necessitate alternative sustainable tillage methods. Conservation tillage methods and conservation agricultural practices that minimize soil disturbance while maintaining soil cover need to be adopted more locally as viable alternatives to conventional tillage
Maize productivity and profitability in Conservation Agriculture systems across agro-ecological regions in Zimbabwe: A review of knowledge and practice
Conservation agriculture (CA) is increasingly promoted in southern Africa as a strategy to improve food security and reverse soil degradation in the face of climate change. However, the performance of CA under different environments and its ability to improve ecosystem services is still unclear. The effects of the CA options; direct seeding, rip-line seeding, and seeding into planting basins on maize grain yield, soil health and profitability across agro-ecological regions in Zimbabwe were evaluated through a review of literature in combination with meta-analysis. Overall, CA improved maize yield over conventional agriculture. Compared to conventional agriculture, direct seeding, rip-line seeding, and seeding into planting basins increased yield by 445, 258 and 241 kg haâ1, respectively. However, there was an initial yield decline in the first two years. CA practices reduced soil erosion and bulk density, and increased soil water content in most studies. Under high levels of residue retention (6 Mg haâ1), CA systems exhibited greater macro fauna abundance and diversity than conventional agriculture, particularly termites. Weed pressure tended to increase labour requirement for hand-hoe weeding under CA compared to conventional agriculture. However, the use of herbicides reduced weeding labour demand during the early season. The benefits of CA are tied to the farmersâ management intensity including: time of planting, weeding, fertiliser and herbicide application, and adequate training on equipment use. Economic analysis results showed that on average, a farmer incurs losses for switching from conventional agriculture to CA in the main maize growing regions of Zimbabwe. Based on the six seasonsâ data, the losses were least with the ripper in drier areas and worst with the direct seeder in wetter areas. Incorporation of chemical herbicides worsens the economic returns of CA tillage options in all the agro-ecological zones. Overall, the study showed that the rip-line seeding is more attractive in the drier areas than direct seeding. Although not costed in this study, critical is the cumulative reversal of soil degradation associated with consistent CA practice which can sustain agriculture. Results from this review suggest that the benefits of CA depend largely on the type and context of CA being practised. It is thus imperative to profile the technology, the farmer socio-economic circumstances and the bio-physical environment in which the farmer operates for proper geographical and beneficiary targeting to achieve greater impact. More longer-term studies are required to fully elucidate the benefits and context of CA options and practice
Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a
joint effort between members of the numerical relativity, analytical relativity
and gravitational-wave data analysis communities. The goal of the NRAR
collaboration is to produce numerical-relativity simulations of compact
binaries and use them to develop accurate analytical templates for the
LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and
extracting astrophysical information from them. We describe the results of the
first stage of the NRAR project, which focused on producing an initial set of
numerical waveforms from binary black holes with moderate mass ratios and
spins, as well as one non-spinning binary configuration which has a mass ratio
of 10. All of the numerical waveforms are analysed in a uniform and consistent
manner, with numerical errors evaluated using an analysis code created by
members of the NRAR collaboration. We compare previously-calibrated,
non-precessing analytical waveforms, notably the effective-one-body (EOB) and
phenomenological template families, to the newly-produced numerical waveforms.
We find that when the binary's total mass is ~100-200 solar masses, current EOB
and phenomenological models of spinning, non-precessing binary waveforms have
overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary
numerical waveforms with mass ratios <= 4, when maximizing over binary
parameters. This implies that the loss of event rate due to modelling error is
below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to
five non-spinning waveforms with mass ratio smaller than 6 have overlaps above
99.7% with the numerical waveform with a mass ratio of 10, without even
maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
- âŠ