113 research outputs found

    Immunosuppressive factor(s) specific for L-glutamic acid(50)-L- tyrosine(50) (GT). II. Presence of I-J determinants on the GT-suppressive factor

    Get PDF
    The responses to the synthetic antigens, L-glutamic acid(60)-L- alanine(30)-L-tyrosine(10) (GAT) and L-glutamic acid(50)-L-tyrosine(50) (GT) are controlled by genes in the I region of the mouse H-2 complex (1-3). Preimmunization of the mice bearing the H-2(p,q,s) nonresponder haplotypes with GAT stimulates the development of suppressor T cells that inhibit in vivo or in vitro antibody responses to GAT complexed to the immunogenic carrier, methylated bovine serum albumin (GAT-MBSA) (4). The copolymer GT is not immunogenic in any inbred mouse strain tested, and has a suppressive effect on the antibody responses to GT-MBSA in mouse strains bearing the H-2(d,f,k,s) haplotypes; suppressor T cells have been demonstrated to be responsible for specific GT suppression (3). We have obtained specific suppressive extracts from thymus and spleen cells of GAT-or GT-primed suppressor strains (5,6). The specific suppressive T-cell factors in the active extracts have been characterized (6,7) and appear similar to the carrier-specific suppressor factor described by Tada and Taniguchi (8). These products belong to a family of newly identified molecules coded for by the I region of the H-2 complex with affinity for antigen and helper (9,10) or suppressive (5-8) regulatory activity on the immune response. Recently, Tada et al. have reported that the keyhole limpet hemocyanin (KLH)-specific suppressor factor is coded for by the I-J subregion of the H-2 complex (11). We now demonstrate also that a GT-specific suppressor factor extracted from the spleens and thymuses of B10.BR (H-2(k)) mice bears determinants controlled by the I-J subregion of the H-2 complex

    Convergent trends and spatiotemporal patterns of Aedes-borne arboviruses in Mexico and Central America

    Get PDF
    Background Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. Methodology/Principal findings Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. Conclusions/Significance Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico’s geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    Get PDF
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions
    corecore