127 research outputs found

    Parameter dimension of turbulence-induced phase errors and its effects on estimation in phase diversity

    Get PDF
    The method of phase diversity has been used in the context of incoherent imaging to estimate jointly an object that is being imaged and phase aberrations induced by atmospheric turbulence. The method requires a parametric model for the phase-aberration function. Typically, the parameters are coefficients to a finite set of basis functions. Care must be taken in selecting a parameterization that properly balances accuracy in the representation of the phase-aberration function with stability in the estimates. It is well known that over parameterization can result in unstable estimates. Thus a certain amount of model mismatch is often desirable. We derive expressions that quantify the bias and variance in object and aberration estimates as a function of parameter dimension

    Mapping modeled exposure of wildland fire smoke for human health studies in California

    Get PDF
    Wildland fire smoke exposure affects a broad proportion of the U.S. population and is increasing due to climate change, settlement patterns and fire seclusion. Significant public health questions surrounding its effects remain, including the impact on cardiovascular disease and maternal health. Using atmospheric chemical transport modeling, we examined general air quality with and without wildland fire smoke PM2.5. The 24-h average concentration of PM2.5 from all sources in 12-km gridded output from all sources in California (2007–2013) was 4.91 μg/m3. The average concentration of fire-PM2.5 in California by year was 1.22 μg/m3 (~25% of total PM2.5). The fire-PM2.5 daily mean was estimated at 4.40 μg/m3 in a high fire year (2008). Based on the model-derived fire-PM2.5 data, 97.4% of California’s population lived in a county that experienced at least one episode of high smoke exposure (“smokewave”) from 2007–2013. Photochemical model predictions of wildfire impacts on daily average PM2.5 carbon (organic and elemental) compared to rural monitors in California compared well for most years but tended to over-estimate wildfire impacts for 2008 (2.0 µg/m3 bias) and 2013 (1.6 µg/m3 bias) while underestimating for 2009 (−2.1 µg/m3 bias). The modeling system isolated wildfire and PM2.5 from other sources at monitored and unmonitored locations, which is important for understanding population exposure in health studies. Further work is needed to refine model predictions of wildland fire impacts on air quality in order to increase confidence in the model for future assessments. Atmospheric modeling can be a useful tool to assess broad geographic scale exposure for epidemiologic studies and to examine scenario-based health impacts

    A Semi-Quantitative, Synteny-Based Method to Improve Functional Predictions for Hypothetical and Poorly Annotated Bacterial and Archaeal Genes

    Get PDF
    During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application

    Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and general additive modeling

    Get PDF
    Background A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Methods Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. Results The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. Conclusions The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data

    Using quantitative proteomics of Arabidopsis roots and leaves to predict metabolic activity

    Get PDF
    Proteins isolated from developing roots and leaves of Arabidopsis thaliana were separated by high-resolution two-dimensional (2-D) electrophoresis. The resulting 2-D proteome maps are markedly different. Quantitative analysis of root and leaf protein spot pairs revealed that in most instances there was at least a 1.5-fold differential. Peptide mass fingerprint analysis of the 288 most abundant 2-D spots from each organ allowed 156 and 126 protein assignments for roots and leaves, respectively, 54 of which were common. Metabolismrelated proteins accounted for 20% of assignments in samples from both organs, whereas energy-related proteins comprised 25 and 18% of leaf and root samples, respectively. Proteins involved in disease resistance and defense encompass 13% of root proteins, but only 7% of leaf proteins. Comparison of protein abundance with transcript abundance, using previously reported microarray data, yielded a correlation coefficient of approximately 0.6, suggesting that it is inappropriate to make protein level or metabolic conclusions based solely upon data from transcript profiling. A comparative model of root and leaf metabolism was developed, based upon protein rather than transcript abundance. The model indicates elevated one-carbon and tricarboxylic acid metabolism in roots relative to leaves

    Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling

    Get PDF
    A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data.https://doi.org/10.1186/1476-069X-12-9

    Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course

    Get PDF
    Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential
    corecore