79 research outputs found

    Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the Pathogenesis of Psoriasis

    Get PDF
    Background: Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ. Methodology/Principal Findings: By spectral imaging analysis of double-stained skin sections we demonstrated that IL-17 was mainly expressed by mast cells and neutrophils and IL-22 by macrophages and dendritic cells. Only an occasional IL-17(pos), but no IL-22(pos) T cell could be detected in psoriatic skin, whereas neither of these cytokines was expressed by T cells in normal skin. However, examination of in vitro-activated T cells by flow cytometry revealed that substantial percentages of skin-derived CD4 and CD8 T cells were able to produce IL-17A alone or together with IL-22 (i.e. Th17 and Tc17, respectively) or to produce IL-22 in absence of IL-17A and IFN-gamma (i.e. Th22 and Tc22, respectively). Remarkably, a significant proportional rise in Tc17 and Tc22 cells, but not in Th17 and Th22 cells, was found in T cells isolated from psoriatic versus normal skin. Interestingly, we found IL-22 single-producers in many skin-derived IL-17A(pos) CD4 and CD8 T cell clones, suggesting that in vivo IL-22 single-producers may arise from IL-17A(pos) T cells as well. Conclusions/Significance: The increased presence of Tc17 and Tc22 cells in lesional psoriatic skin suggests that these types of CD8 T cells play a significant role in the pathogenesis of psoriasis. As part of the skin-derived IL-17A(pos) CD4 and CD8 T clones developed into IL-22 single-producers, this demonstrates plasticity in their cytokine production profile and suggests a developmental relationship between Th17 and Th22 cells and between Tc17 and Tc22 cell

    Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin

    Get PDF
    Human skin provides both physical integrity and immunological protection from the external environment using functionally distinct layers, cell types and extracellular matrix. Despite its central role in human health and disease, the constituent proteins of skin have not been systematically characterized. Here, we combine advanced tissue dissection methods, flow cytometry and state-of-the-art proteomics to describe a spatially-resolved quantitative proteomic atlas of human skin. We quantify 10,701 proteins as a function of their spatial location and cellular origin. The resulting protein atlas and our initial data analyses demonstrate the value of proteomics for understanding cell-type diversity within the skin. We describe the quantitative distribution of structural proteins, known and previously undescribed proteins specific to cellular subsets and those with specialized immunological functions such as cytokines and chemokines. We anticipate that this proteomic atlas of human skin will become an essential community resource for basic and translational research (https://skin.science/)

    Lichen planus remission is associated with a decrease of human herpes virus type 7 protein expression in plasmacytoid dendritic cells

    Get PDF
    The cause of lichen planus is still unknown. Previously we showed human herpes virus 7 (HHV-7) DNA and proteins in lesional lichen planus skin, and significantly less in non-lesional lichen planus, psoriasis or healthy skin. Remarkably, lesional lichen planus skin was infiltrated with plasmacytoid dendritic cells. If HHV-7 is associated with lichen planus, then HHV-7 replication would reduce upon lichen planus remission. HHV-7 DNA detection was performed by nested PCR and HHV-7 protein by immunohistochemistry on lesional skin biopsies from lichen planus patients before treatment and after remission. Biopsies were obtained from lichen planus lesions before treatment (n = 18 patients) and after remission (n = 13). Before treatment 61% biopsies contained HHV-7 DNA versus 8% after remission (P = 0.01). HHV-7-protein positive cell numbers diminished significantly after remission in both dermis and epidermis. Expression of HHV-7 was mainly detected in BDCA-2 positive plasmacytoid dendritic cells rather than CD-3 positive lymphocytes. HHV-7 replicates in plasmacytoid dendritic cells in lesional lichen planus skin and diminishes after remission. This study further supports our hypothesis that HHV-7 is associated with lichen planus pathogenesis

    Expression of the chemokine receptor CCR5 in psoriasis and results of a randomized placebo controlled trial with a CCR5 inhibitor

    Get PDF
    Several reports have indicated that the chemokine receptor CCR5 and its ligands, especially CCL5 (formerly known as RANTES), may play a role in the pathogenesis of psoriasis. The purpose of this investigation was to examine the expression of CCR5 and its ligands in chronic plaque psoriasis and to evaluate the clinical and immunohistochemical effect of a CCR5 receptor inhibitor. Immunohistochemical analysis showed low but significant increased total numbers of CCR5 positive cells in epidermis and dermis of lesional skin in comparison to non-lesional skin. However, relative expression of CCR5 proportional to the cells observed revealed that the difference between lesional and non-lesional skin was only statistically significant in the epidermis for CD3 positive cells and in the dermis for CD68 positive cells. Quantification of mRNA by reverse transcriptase-polymerase chain reaction only showed an increased expression of CCL5 (RANTES) in lesional skin. A randomized placebo-controlled clinical trial in 32 psoriasis patients revealed no significant clinical effect and no changes at the immunohistochemical level comparing patients treated with placebo or a CCR5 inhibitor SCH351125. We conclude that although CCR5 expression is increased in psoriatic lesions, this receptor does not play a crucial role in the pathogenesis of psoriasis

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Neutrophils infiltrating ultraviolet B-irradiated normal human skin display high IL-10 expression

    No full text
    Exposure to an erythemal dose of ultraviolet B (UVB) is known to induce interleukin (IL-10) expression in human skin. It is generally believed that this IL-10 is predominantly expressed by CD11b(+) HLA-DR+ macrophages that infiltrate the UVB-exposed skin. This cytokine is presumed to contribute to the immunosuppressive effects of UVB by inhibiting cell-mediated immune responses. We recently demonstrated that neutrophils, which also invade UVB-irradiated skin, express CD11b and HLA-DR as well. In addition, we showed that the presence of these neutrophils affects T-cell responses in primary T-cell cultures derived from UVB-exposed skin. Since neutrophils invade UVB-exposed skin and, like macrophages, express CD11b and HLA-DR, we sought to determine whether neutrophils represent another source of IL-10. Skin biopsies were obtained from four healthy volunteers before and 2 days after exposure to four minimal erythema doses of UVB. A series of immunohistochemical double-staining procedures using the following markers was performed: IL-10, CD11b, HLA-DR, CD36, neutrophil elastase, and CD66b. As expected IL-10 could be detected in CD11b(+) HLA-DR+ CD36(+) macrophages in the epidermis and dermis of UVB-exposed skin. Surprisingly, the majority of the abundant IL-10 expression was found in CD11b(+) HLA-DR+ elastase(+) CD66b(+) neutrophils. Cytospin preparations from dermal cell suspensions confirmed the IL-10 expression by neutrophils displaying characteristic multilobular nuclei. Thus, neutrophils in UVB-exposed skin express IL-10 and should be recognized as active coplayers in the creation of the UVB-induced immunosuppressive micro-environmen

    IL-4 expression by neutrophils in psoriasis lesional skin upon high-dose UVB exposure

    No full text
    Background, Upon a single high dose of UVB irradiation of psoriatic lesional skin, IFN-gamma expression is decreased, whereas IL-4 expression is enhanced. A similar type 1 to type 2 shift was found in dermal T cells derived from irradiated lesional skin as compared to unexposed lesional psoriatic skin. We have found recently that the IL-4 protein detected in situ upon UVB exposure of normal skin was not associated with T cells but with infiltrating neutrophils. Objective: To determine which cell types express IL-4 in psoriatic skin after UV8 irradiation. Methods: Skin biopsies were obtained from healthy controls and psoriasis patients before and after local UVB exposure. Double immunohistochemical stainings were performed to determine the identity of IL-4-expressing cells. Results: In the irradiated skin of both healthy controls and patients, IL-4-positive cells coexpressed elastase and CD15, but not CD3. Conclusion: IL-4-expressing cells found in psoriatic skin after a single high-dose UVB exposure appeared to be neutrophils. Copyright (C) 2003 S. Karger AG, Base

    In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin

    No full text
    Keratinocytes contribute to cutaneous immune responses through the expression of cytokines. We investigated whether human keratinocytes can express IL-23, a newly defined IFN-gamma-inducing cytokine composed of a unique p19 subunit and a p40 subunit shared with IL-12. Cultured keratinocytes from normal and lesional psoriatic skin were found to express constitutively mRNA for both subunits of IL-23. Low but significant levels of the heterodimeric IL-23 protein could be detected in cell lysates and supernatants from stimulated keratinocytes by immunoblotting and ELISA. Functional analysis showed that these low levels of keratinocyte-derived IL-23 were sufficient to enhance the IFN-gamma production by memory T cells. Immunostaining of skin sections confirmed expression of both subunits of IL-23 by keratinocytes in situ and also revealed expression of this cytokine in the dermal compartment. IL-23 expression was significantly higher in psoriatic lesional skin, compared with normal and psoriatic nonlesional skin. The immunostained preparations of cultured cells and IL-23 levels in culture supernatants did not show any difference between normal and psoriatic keratinocytes indicating no intrinsic aberration of IL-23 expression in keratinocytes from psoriatic skin. Double staining of cytospin preparations demonstrated that IL-23 p19 is also expressed by epidermal Langerhans cells, dermal dendritic cells, and macrophages. Psoriasis is a chronic inflammatory skin disease mediated by IFN-gamma-expressing type 1 memory T cells. As IL-23 is important to activate memory T cells to produce IFN-gamma, its augmented expression of IL-23 by keratinocytes and cutaneous APC may contribute to the perpetuation of the inflammation process in this diseas

    Ultraviolet-B irradiation decreases IFN-gamma and increases IL-4 expression in psoriatic lesional skin in situ and in cultured dermal T cells derived from these lesions

    No full text
    Type 1 cytokine producing T cells play an important role in the pathogenesis of psoriasis. Ultraviolet-B (UVB) irradiation is effective in the treatment of this disease. In normal skin, UVB causes a change in dermal microenvironment, leading to a decrease of IFN-gamma expressing type 1 T cells and a concurrent increase of IL-4 expressing type 2 T cells. The aim of this study was to show whether UVB irradiation causes a like-wise shift of type 1 and type 2 responses in psoriatic skin. For this purpose, biopsies were obtained from the lesional skin of psoriatic patients before, 2 days and 14 days after a single exposure to 4 MED UVB. Sections from these biopsies were immunostained (CD3, IFN-gamma and IL-4) or RNA was extracted and analyzed for the expressions of IFN-gamma and IL-4 by PCR. In addition, primary cultures of T cells from dermal cell suspensions were stained intracellularly for IFN-gamma and IL-4 expression and CD4(+) and CD8(+) T subsets were analyzed by flow cytometry. IFN-gamma was abundantly expressed in situ before irradiation and decreased in all patients after UVB irradiation, whereas IL-4 expression was variably expressed before irradiation and increased in different degrees after irradiation. Cytokine mRNA expressions determined by PCR showed a clear decrease of IFN-gamma and increase of IL-4 following UVB irradiation. Both CD4(+) and CD8(+) dermal T cells were found to produce less IFN-gamma and more IL-4 following UVB irradiation as determined by flow cytometry. Decrease in IFN-gamma expression and increase in IL-4 expression of dermal T cells in psoriatic lesions after UVB irradiation may lead to decrease in local immunoreactivity These changes could be part of the therapeutic effects of UVB on psoriasi
    corecore