12 research outputs found

    Membrane Requirements for Uridylylation of the Poliovirus VPg Protein and Viral RNA Synthesis In Vitro

    No full text
    Efficient translation of poliovirus (PV) RNA in uninfected HeLa cell extracts generates all of the viral proteins required to carry out viral RNA replication and encapsidation and to produce infectious virus in vitro. In infected cells, viral RNA replication occurs in ribonucleoprotein complexes associated with clusters of vesicles that are formed from preexisting intracellular organelles, which serve as a scaffold for the viral RNA replication complex. In this study, we have examined the role of membranes in viral RNA replication in vitro. Electron microscopic and biochemical examination of extracts actively engaged in viral RNA replication failed to reveal a significant increase in vesicular membrane structures or the protective aggregation of vesicles observed in PV-infected cells. Viral, nonstructural replication proteins, however, bind to heterogeneous membrane fragments in the extract. Treatment of the extracts with nonionic detergents, a membrane-altering inhibitor of fatty acid synthesis (cerulenin), or an inhibitor of intracellular membrane trafficking (brefeldin A) prevents the formation of active replication complexes in vitro, under conditions in which polyprotein synthesis and processing occur normally. Under all three of these conditions, synthesis of uridylylated VPg to form the primer for initiation of viral RNA synthesis, as well as subsequent viral RNA replication, was inhibited. Thus, although organized membranous structures morphologically similar to the vesicles observed in infected cells do not appear to form in vitro, intact membranes are required for viral RNA synthesis, including the first step of forming the uridylylated VPg primer for RNA chain elongation

    Viable Polioviruses That Encode 2A Proteins with Fluorescent Protein Tagsâ–ż

    No full text
    The 2A proteins of the Picornaviridae enterovirus genus are small cysteine proteinases that catalyze essential cleavages in the viral polyprotein in cis and in several cellular proteins in trans. In addition, 2A has been implicated in the process of viral RNA replication, independent of its protease functions. We have generated viable polioviruses that encode 2A proteins containing fluorescent protein tag insertions at either of two sites in the 2A protein structure. Viruses containing an insertion of Discosoma sp. red fluorescent protein (DsRed) after residue 144 of 2A, near the C terminus, produced plaques only slightly smaller than wild-type (wt) virus. The polyprotein harboring the 2A-DsRed fusion protein was efficiently and accurately cleaved; fluorescent 2A proteinase retained protease activity in trans and supported translation and replication of viral RNA, both in vitro and in infected cells. Intracellular membrane reorganization to support viral RNA synthesis was indistinguishable from that induced by wt virus. Infected cells exhibited strong red fluorescence from expression of the 2A-DsRed fusion protein, and the progeny virus was stable for three to four passages, after which deletions within the DsRed coding sequence began to accumulate. Confocal microscopic imaging and analysis revealed a portion of 2A-DsRed in punctate foci concentrated in the perinuclear region that colocalized with replication protein 2C. The majority of 2A, however, was associated with an extensive structural matrix throughout the cytoplasm and was not released from infected cells permeabilized with digitonin

    Formation of the Poliovirus Replication Complex Requires Coupled Viral Translation, Vesicle Production, and Viral RNA Synthesis

    No full text
    Poliovirus (PV) infection induces the rearrangement of intracellular membranes into characteristic vesicles which assemble into an RNA replication complex. To investigate this transformation, endoplasmic reticulum (ER) membranes in HeLa cells were modified by the expression of different cellular or viral membrane-binding proteins. The membrane-binding proteins induced two types of membrane alterations, i.e., extended membrane sheets and vesicles similar to those found during a PV infection. Cells expressing membrane-binding proteins were superinfected with PV and then analyzed for virus replication, location of membranes, viral protein, and RNA by immunofluorescence and fluorescent in situ hybridization. Cultures expressing cellular or viral membrane-binding proteins, but not those expressing soluble proteins, showed a markedly reduced ability to support PV replication as a consequence of the modification of ER membranes. The altered membranes, regardless of their morphology, were not used for the formation of viral replication complexes during a subsequent PV infection. Specifically, membrane sheets were not substrates for PV-induced vesicle formation, and, surprisingly, vesicles induced by and carrying one or all of the PV replication proteins did not contribute to replication complexes formed by the superinfecting PV. The formation of replication complexes required active viral RNA replication. The extensive alterations induced by membrane-binding proteins in the ER resulted in reduced viral protein synthesis, thus affecting the number of cells supporting PV multiplication. Our data suggest that a functional replication complex is formed in cis, in a coupled process involving viral translation, membrane modification and vesicle budding, and viral RNA synthesis

    Strand-Specific RNA Synthesis Defects in a Poliovirus with a Mutation in Protein 3A

    No full text
    Substitution of a methionine residue at position 79 in poliovirus protein 3A with valine or threonine caused defective viral RNA synthesis, manifested as delayed onset and reduced yield of viral RNA, in HeLa cells transfected with a luciferase-containing replicon. Viruses containing these same mutations produced small or minute plaques that generated revertants upon further passage, with either wild-type 3A sequences or additional nearby compensating mutations. Translation and polyprotein processing were not affected by the mutations, and 3AB proteins containing the altered amino acids at position 79 showed no detectable loss of membrane-binding activity. Analysis of individual steps of viral RNA synthesis in HeLa cell extracts that support translation and replication of viral RNA showed that VPg uridylylation and negative-strand RNA synthesis occurred normally from mutant viral RNA; however, positive-strand RNA synthesis was specifically reduced. The data suggest that a function of viral protein 3A is required for positive-strand RNA synthesis but not for production of negative strands

    Analysis of putative active site residues of the poliovirus 3C protease

    No full text
    International audienceIt was recently suggested that the picornavirus 3C proteases are homologous to the chymotrypsin-like serine proteases. The two structural models proposed differ in one of the postulated active site residues, Glu/Asp71 or Asp85. We changed Glu71 of the poliovirus type 1 protease to Asp or Gln and Asp85 to Glu by oligonucleotide-directed site-specific mutagenesis of an infectious cDNA, and attempted to recover virus after transfection. Both Glu71 changes were lethal for the virus and proteolytic activity was abolished in vitro with the exception of the primary cleavage event at the P2/P3 junction. In contrast, the Asp85----Glu virus was viable. This mutant was temperature-sensitive for growth at 39 degrees and exhibited a minute plaque phenotype at permissive temperature. This defect correlated with low levels of viral-specific RNA and protein syntheses and slow virus growth. Proteolytic processing at the COOH-terminus of 3C was impaired, reducing the production of mature 3C and the viral replicase 3D. In addition, 3C-mediated cleavage events within the P2 region of the polyprotein seemed to occur rather inefficiently. 3C-specific processing within P1 and elsewhere within P3 was unaffected. We suggest that Asp85 does not form part of the active site of 3C, but could be important for the specific recognition of cleavage sites within P2

    Stable and Highly Immunogenic MicroRNA-Targeted Single-Dose Live Attenuated Vaccine Candidate against Tick-Borne Encephalitis Constructed Using Genetic Backbone of Langat Virus

    No full text
    Tick-borne encephalitis virus (TBEV) is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, efforts to develop of TBEV live attenuated virus (LAV) vaccines with acceptable safety and immunogenicity characteristics have not been successful. Here we report the development and evaluation of a highly attenuated and immunogenic microRNA-targeted TBEV LAV.Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, attempts to develop of a live attenuated virus (LAV) vaccine against TBEV with acceptable safety and immunogenicity characteristics have not been successful. To overcome this impasse, we generated a chimeric TBEV that was highly immunogenic in nonhuman primates (NHPs). The chimeric virus contains the prM/E genes of TBEV, which are expressed in the genetic background of an antigenically closely related, but less pathogenic member of the TBEV complex—Langat virus (LGTV), strain T-1674. The neurovirulence of this chimeric virus was subsequently controlled by robust targeting of the viral genome with multiple copies of central nervous system-enriched microRNAs (miRNAs). This miRNA-targeted T/1674-mirV2 virus was highly stable in Vero cells and was not pathogenic in various mouse models of infection or in NHPs. Importantly, in NHPs, a single dose of the T/1674-mirV2 virus induced TBEV-specific neutralizing antibody (NA) levels comparable to those seen with a three-dose regimen of an inactivated TBEV vaccine, currently available in Europe. Moreover, our vaccine candidate provided complete protection against a stringent wild-type TBEV challenge in mice and against challenge with a parental (not miRNA-targeted) chimeric TBEV/LGTV in NHPs. Thus, this highly attenuated and immunogenic T/1674-mirV2 virus is a promising LAV vaccine candidate against TBEV and warrants further preclinical evaluation of its neurovirulence in NHPs prior to entering clinical trials in humans

    Complete mitochondrial genomes of Baikal endemic coregonids: omul and lacustrine whitefish (Salmonidae: Coregonus sp.)

    No full text
    Coregonid fishes are among the most successful groups in the subarctic, boreal, and subalpine fresh waters of the northern hemisphere. Limnetic–benthic sympatric species-pairs from two different evolutionary lineages, the North American lake whitefish (Coregonus clupeaformis species complex), and the European whitefish (Coregonus lavaretus species complex), are becoming the subject of close attention to explore the role of natural selection during the ecological speciation. Baikal endemic coregonids, limnetic omul (Coregonus migratorius), and benthic lacustrine whitefish (Coregonus baicalensis) are the only representatives of another unique lineage that has not left the lake since the divergence from the two above. Due to Pleistocene oscillations sympatric limnetic–benthic divergence has been replicated here many times within the same water body over a long geological period in contrast to both Europe and America where sympatric species-pairs are the results of post-glacial secondary-contacts between glacial isolates during the Late Pleistocene on the territory of each continent. Mitochondrial genomes encode genes that are essential for respiration and metabolism. Data on complete mitogenomes of Baikal endemic coregonids provided here will complement ongoing investigations on energy metabolism as the main biological function involved in the divergence between limnetic and benthic whitefish

    Identification of tolerated insertion sites in poliovirus non-structural proteins

    No full text
    Insertion of nucleotide sequences encoding “tags” that can be expressed in specific viral proteins during an infection is a useful strategy for purifying viral proteins and their functional complexes from infected cells and/or for visualizing the dynamics of their subcellular location over time. To identify regions in the poliovirus polyprotein that could potentially accommodate insertion of tags, transposon-mediated insertion mutagenesis was applied to the entire nonstructural protein-coding region of the poliovirus genome, followed by selection of genomes capable of generating infectious, viable viruses. This procedure allowed us to identify at least one site in each viral nonstructural protein, except protein 2C, in which a minimum of five amino acids could be inserted. The distribution of these sites is analyzed from the perspective of their protein structural context and from the perspective of virus evolution
    corecore