15 research outputs found

    La línea informal de Madrid, Cañada Real Galiana. Desarrollo de núcleos urbanos en el Sector 6

    Full text link
    [ES] Durante los siglos XIX y XX la trashumancia tradicional fue perdiendo cada vez más peso en España y las Cañadas cayeron parcialmente en desuso. La Cañada Real Galiana comienza a sufrir problemas adicionales debido a su situación geográfica, próxima a áreas urbanas, lo que impulsa la ocupación de estos terrenos a partir de los años 50 y 60 transformando este espacio en una ciudad lineal no planificada. En la actualidad, la Cañada Real Galiana se caracteriza por ser un lugar donde confluyen poblaciones de gran diversidad cultural, construcciones de diferentes tamaños, características, antigüedad, usos; así como distintos problemas sociales, económicos y legales que hacen del Territorio un espacio complejo de interpretar. Con este contexto se analiza la parte habitada de la Cañada Real Galiana que atraviesa la periferia metropolitana de Madrid. El objetivo es estudiar este tramo de 14.6 kilómetros, dividido en Sectores actualmente aislados y de gran precariedad. El proyecto busca desarrollar una estrategia de intervención urbana que logre la integración de estos Sectores entre sí y con las urbanizaciones cercanas, a través de la densificación y la creación de nuevos centros urbanos dotados de espacio público, residencial y mixto para el desarrollo de la actividad económica local.Teixeira Rico, C. (2020). La línea informal de Madrid, Cañada Real Galiana. Desarrollo de núcleos urbanos en el Sector 6. http://hdl.handle.net/10251/155458TFG

    Dolutegravir twice-daily dosing in children with HIV-associated tuberculosis: a pharmacokinetic and safety study within the open-label, multicentre, randomised, non-inferiority ODYSSEY trial

    Get PDF
    Background: Children with HIV-associated tuberculosis (TB) have few antiretroviral therapy (ART) options. We aimed to evaluate the safety and pharmacokinetics of dolutegravir twice-daily dosing in children receiving rifampicin for HIV-associated TB. Methods: We nested a two-period, fixed-order pharmacokinetic substudy within the open-label, multicentre, randomised, controlled, non-inferiority ODYSSEY trial at research centres in South Africa, Uganda, and Zimbabwe. Children (aged 4 weeks to <18 years) with HIV-associated TB who were receiving rifampicin and twice-daily dolutegravir were eligible for inclusion. We did a 12-h pharmacokinetic profile on rifampicin and twice-daily dolutegravir and a 24-h profile on once-daily dolutegravir. Geometric mean ratios for trough plasma concentration (Ctrough), area under the plasma concentration time curve from 0 h to 24 h after dosing (AUC0–24 h), and maximum plasma concentration (Cmax) were used to compare dolutegravir concentrations between substudy days. We assessed rifampicin Cmax on the first substudy day. All children within ODYSSEY with HIV-associated TB who received rifampicin and twice-daily dolutegravir were included in the safety analysis. We described adverse events reported from starting twice-daily dolutegravir to 30 days after returning to once-daily dolutegravir. This trial is registered with ClinicalTrials.gov (NCT02259127), EudraCT (2014–002632-14), and the ISRCTN registry (ISRCTN91737921). Findings: Between Sept 20, 2016, and June 28, 2021, 37 children with HIV-associated TB (median age 11·9 years [range 0·4–17·6], 19 [51%] were female and 18 [49%] were male, 36 [97%] in Africa and one [3%] in Thailand) received rifampicin with twice-daily dolutegravir and were included in the safety analysis. 20 (54%) of 37 children enrolled in the pharmacokinetic substudy, 14 of whom contributed at least one evaluable pharmacokinetic curve for dolutegravir, including 12 who had within-participant comparisons. Geometric mean ratios for rifampicin and twice-daily dolutegravir versus once-daily dolutegravir were 1·51 (90% CI 1·08–2·11) for Ctrough, 1·23 (0·99–1·53) for AUC0–24 h, and 0·94 (0·76–1·16) for Cmax. Individual dolutegravir Ctrough concentrations were higher than the 90% effective concentration (ie, 0·32 mg/L) in all children receiving rifampicin and twice-daily dolutegravir. Of 18 children with evaluable rifampicin concentrations, 15 (83%) had a Cmax of less than the optimal target concentration of 8 mg/L. Rifampicin geometric mean Cmax was 5·1 mg/L (coefficient of variation 71%). During a median follow-up of 31 weeks (IQR 30–40), 15 grade 3 or higher adverse events occurred among 11 (30%) of 37 children, ten serious adverse events occurred among eight (22%) children, including two deaths (one tuberculosis-related death, one death due to traumatic injury); no adverse events, including deaths, were considered related to dolutegravir. Interpretation: Twice-daily dolutegravir was shown to be safe and sufficient to overcome the rifampicin enzyme-inducing effect in children, and could provide a practical ART option for children with HIV-associated TB

    Neuropsychiatric manifestations and sleep disturbances with dolutegravir-based antiretroviral therapy versus standard of care in children and adolescents: a secondary analysis of the ODYSSEY trial

    Get PDF
    BACKGROUND: Cohort studies in adults with HIV showed that dolutegravir was associated with neuropsychiatric adverse events and sleep problems, yet data are scarce in children and adolescents. We aimed to evaluate neuropsychiatric manifestations in children and adolescents treated with dolutegravir-based treatment versus alternative antiretroviral therapy. METHODS: This is a secondary analysis of ODYSSEY, an open-label, multicentre, randomised, non-inferiority trial, in which adolescents and children initiating first-line or second-line antiretroviral therapy were randomly assigned 1:1 to dolutegravir-based treatment or standard-of-care treatment. We assessed neuropsychiatric adverse events (reported by clinicians) and responses to the mood and sleep questionnaires (reported by the participant or their carer) in both groups. We compared the proportions of patients with neuropsychiatric adverse events (neurological, psychiatric, and total), time to first neuropsychiatric adverse event, and participant-reported responses to questionnaires capturing issues with mood, suicidal thoughts, and sleep problems. FINDINGS: Between Sept 20, 2016, and June 22, 2018, 707 participants were enrolled, of whom 345 (49%) were female and 362 (51%) were male, and 623 (88%) were Black-African. Of 707 participants, 350 (50%) were randomly assigned to dolutegravir-based antiretroviral therapy and 357 (50%) to non-dolutegravir-based standard-of-care. 311 (44%) of 707 participants started first-line antiretroviral therapy (ODYSSEY-A; 145 [92%] of 157 participants had efavirenz-based therapy in the standard-of-care group), and 396 (56%) of 707 started second-line therapy (ODYSSEY-B; 195 [98%] of 200 had protease inhibitor-based therapy in the standard-of-care group). During follow-up (median 142 weeks, IQR 124–159), 23 participants had 31 neuropsychiatric adverse events (15 in the dolutegravir group and eight in the standard-of-care group; difference in proportion of participants with ≥1 event p=0·13). 11 participants had one or more neurological events (six and five; p=0·74) and 14 participants had one or more psychiatric events (ten and four; p=0·097). Among 14 participants with psychiatric events, eight participants in the dolutegravir group and four in standard-of-care group had suicidal ideation or behaviour. More participants in the dolutegravir group than the standard-of-care group reported symptoms of self-harm (eight vs one; p=0·025), life not worth living (17 vs five; p=0·0091), or suicidal thoughts (13 vs none; p=0·0006) at one or more follow-up visits. Most reports were transient. There were no differences by treatment group in low mood or feeling sad, problems concentrating, feeling worried or feeling angry or aggressive, sleep problems, or sleep quality. INTERPRETATION: The numbers of neuropsychiatric adverse events and reported neuropsychiatric symptoms were low. However, numerically more participants had psychiatric events and reported suicidality ideation in the dolutegravir group than the standard-of-care group. These differences should be interpreted with caution in an open-label trial. Clinicians and policy makers should consider including suicidality screening of children or adolescents receiving dolutegravir

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity &gt; 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Las desigualdades urbanas. Estudio comparativo de herramientas para su medición

    Full text link
    [ES] El aumento de las desigualdades, espacialmente notable en los entornos urbanos, desafortunadamente ha ido incrementándose en los últimos años. La crisis, además de disfuncionalidades territoriales también nos ha traído un aumento de la brecha entre los ciudadanos. Para medir de alguna forma el grado de desfavorecimiento en algunas comunidades se han desarrollados instrumentos de medición. Algunos ejemplos son los desarrollados en Castilla y León a través de su Estrategia de Regeneración Urbana en Castilla y León (ERUCYL) ; el desarrollado por el Ayuntamiento de Madrid a través del Banco de Indicadores para la determinación de la vulnerabilidad integral así como el Plan Madrid Recupera (MAD-RE) o los trabajos desarrollados hace unos años en Andalucía Vulnerabilidad del tejido social de los barrios desfavorecidos de Andalucía . En la Comunitat Valenciana, el trabajo que responde a esta necesidad se llama VEUS (Visor de Espacios Urbanos Sensibles). Este trabajo pretende hacer una comparativa entre las distintas herramientas para valorar la similitud o diferencia de enfoques que entre ellas puede apreciarse.[EN] The increase in inequalities, particularly in urban environments, has unfortunately been increasing in recent years. The crisis, in addition to territorial dysfunctions, has also brought us an increase in the gap between citizens. In order to measure in some way the degree of disadvantage in some communities, measurement instruments have been developed. Some examples are those developed in Castilla y León through its "Urban Regeneration Strategy in Castilla y León (ERUCYL)"; the one developed by the Madrid City Council through the "Bank of Indicators for the determination of integral vulnerability" as well as the Madrid Recovery Plan (MAD-RE) or the works developed a few years ago in Andalusia "Vulnerability of the social fabric of disadvantaged neighbourhoods in Andalusia". In the Valencia Region, the work that responds to this need is called VEUS (Visor of Sensitive Urban Spaces). This work aims to make a comparison between the different tools to assess the similarity or difference in approaches that can be seen between them.Teixeira Rico, C. (2019). Las desigualdades urbanas. Estudio comparativo de herramientas para su medición. http://hdl.handle.net/10251/135812TFG

    Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil

    No full text
    This work was supported by Decit, SCTIE, Brazilian Ministry of Health, Conselho Nacional de Desenvolvimento Científico - CNPq (440685/ 2016-8, 440856/2016-7 and 421598/2018-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - (88887.130716/2016-00), European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement (734548), STARBIOS (709517), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-26/2002.930/2016), International Development Research Centre (IDRC) Canada (108411-001), European Union’s Horizon 2020 under grant agreements ZIKACTION (734857) and ZIKAPLAN (734548).Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Secretaria de Saúde do Estado de Mato Grosso do Sul. Laboratório Central de Saúde Pública. Campo Grande, MS, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Secretaria de Saúde do Estado da Bahia. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Gorgas Memorial Institute for Health Studies. Panama, Panama.Universidade Federal da Bahia. Vitória da Conquista, BA, Brazil.Laboratorio Central de Salud Pública. Asunción, Paraguay.Fundação Oswaldo Cruz. Bio-Manguinhos. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Instituto de Investigaciones en Ciencias de la Salud. San Lorenzo, Paraguay.Secretaria de Estado de Saúde de Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Campo Grande, MS, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, Ba, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Hospital das Forças Armadas. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Nova de Lisboa. Instituto de Higiene e Medicina Tropical. Lisboa, Portugal.University of Sydney. School of Life and Environmental Sciences and School of Medical Sciences. Marie Bashir Institute for Infectious Diseases and Biosecurity. Sydney, NSW, Australia.University of KwaZulu-Natal. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Estadual de Feira de Santana. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Universidade de Brasília. Brasília, DF, Brazil.Universidade Salvador. Salvador, BA, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hantaviroses e Rickettsioses. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública do Estado do Paraná. Curitiba, PR, Brazil.Laboratório Central de Saúde Pública do Estado de Rondônia. Porto Velho, RO, Brazil.Laboratório Central de Saúde Pública do Estado do Amazonas. Manaus, AM, Brazil.Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte. Natal, RN, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Noel Nutels. Rio de Janeiro, RJ, Brazil.Instituto Adolfo Lutz. São Paulo, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Instituto Nacional de Enfermedades Virales Humanas Dr. Julio Maiztegui. Pergamino, Argentina.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Instituto de Salud Pública de Chile. Santiago, Chile.Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez. Ciudad de México, México.Instituto Nacional de Enfermedades Infecciosas Dr Carlos G Malbrán. Buenos Aires, Argentina.Ministerio de Salud Pública de Uruguay. Montevideo, Uruguay.Instituto Costarricense de Investigación y Enseñanza em Nutrición y Salud. Tres Ríos, Costa Rica.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Universidade Federal de Pernambuco. Recife, PE, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte. MG, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, BA, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses

    Increased interregional virus exchange and nucleotide diversity outline the expansion of chikungunya virus in Brazil

    No full text
    Abstract The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021–2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil
    corecore