337 research outputs found

    Early changes in alpha band power and DMN BOLD activity in Alzheimer's disease: a simultaneous resting state EEG-fMRI study

    Get PDF
    Simultaneous resting state functional magnetic resonance imaging (rsfMRI)-resting state electroencephalography (rsEEG) studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN) regions. Negative associations were found in occipital regions. In Alzheimer's disease (AD), rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC). We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI-EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8-12 Hz, 8-10 Hz, and 10-12 Hz) was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≄ 50 voxels). This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD signal in numerous regions, including DMN regions, are diminished in AD

    Measuring cortical connectivity in Alzheimer's disease as a brain neural network pathology: Toward clinical applications

    Get PDF
    Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Hippocampus and basal forebrain volumes modulate effects of anticholinergic treatment on delayed recall in healthy older adults.

    Get PDF
    "Introduction Volumes of hippocampus and cholinergic basal forebrain are associated with delayed recall performance and may modulate the effect of a muscarinic receptor antagonist on delayed recall in healthy volunteers Methods We studied 15 older adults before and after the oral administration of a single dose of 1 or 2 mg of the preferential M1 muscarinic receptor antagonist trihexyphenidyl (Artaneℱ) or placebo in a double-blind randomized cross-over design. Hippocampus and basal forebrain volumes were measured using magnetic resonance imaging. Results We found a significant interaction between treatment and hippocampus volume and a trend level effect between treatment and anterior basal forebrain volume on task performance, with an attenuation of the association between volume size and performance with trihexyphenidyl. Discussion These findings suggest a reduction of delayed recall performance with increasing doses of the muscarinic antagonist that is related to an uncoupling of the association of task performance with cholinergic basal forebrain and hippocampus volumes.

    Longitudinal trajectories of cognitive reserve in hypometabolic subtypes of Alzheimer's disease

    Get PDF
    Previous studies have demonstrated resilience to AD-related neuropathology in a form of cognitive reserve (CR). In this study we investigated a relationship between CR and hypometabolic subtypes of AD, specifically the typical and the limbic-predominant subtypes. We analyzed data from 59 A beta-positive cognitively normal (CN), 221 prodromal Alzheimer's disease (AD) and 174 AD dementia participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) from ADNI and ADNIGO/2 phases. For replication, we analyzed data from 5 A beta positive CN, 89 prodromal AD and 43 AD dementia participants from ADNI3. CR was estimated as standardized residuals in a model predicting cognition from temporoparietal grey matter volumes and covariates. Higher CR estimates predicted slower cognitive decline. Typical and limbic-predominant hypometabolic subtypes demonstrated similar baseline CR, but the results suggested a faster decline of CR in the typical subtype. These findings support the relationship between subtypes and CR, specifically longitudinal trajectories of CR. Results also underline the importance of longitudinal analyses in research on CR

    Associations of cholinergic system integrity with cognitive decline in GBA1 and LRRK2 mutation carriers

    Get PDF
    In Parkinson’s disease (PD), GBA1- and LRRK2-mutations are associated with different clinical phenotypes which might be related to differential involvement of the cholinergic system. We investigated cholinergic integrity in 149 asymptomatic GBA1 and 169 asymptomatic LRRK2 mutation carriers, 112 LRRK2 and 60 GBA1 carriers with PD, 492 idiopathic PD, and 180 controls from the PPMI cohort. Basal forebrain volumes were extracted and white matter pathways from nucleus basalis of Meynert (NBM) to cortex and from pedunculopontine nucleus (PPN) to thalamus were assessed with a free water-corrected DTI model. Bayesian ANCOVAs were conducted for group comparisons and Bayesian linear mixed models to assess associations with cognitive decline. Basal forebrain volumes were increased in asymptomatic GBA1 (Bayes Factor against the null hypothesis (BF10) = 75.2) and asymptomatic LRRK2 (BF10 = 57.0) compared to controls. Basal forebrain volumes were increased in LRRK2- compared to GBA1-PD (BF10 = 14.5) and idiopathic PD (BF10 = 3.6*107), with no difference between idiopathic PD and PD-GBA1 (BF10 = 0.25). Mean diffusivity along the medial NBM pathway was decreased in asymptomatic GBA1 compared to controls (BF10 = 30.3). Over 5 years, idiopathic PD and PD-GBA1 declined across all cognitive domains whereas PD-LRRK2 patients only declined in processing speed. We found an interaction between basal forebrain volume and time in predicting multiple cognitive domains in idiopathic PD and PD-GBA1, but not in PD-LRRK2. While LRRK2 and GBA1 mutations are both associated with increased basal forebrain volume at asymptomatic stages, this increase persists at the symptomatic PD stage only in LRRK2 and might be related to slower cognitive decline in these patients
    • 

    corecore