129 research outputs found

    Injection of photoelectrons into dense argon gas

    Full text link
    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted to Plasma Sources Science and Technolog

    Reproducibility of BOLD-based functional MRI obtained at 4

    Get PDF
    Abstract: The reproducibility of activation patterns in the whole brain obtained by functional magnetic resonance imaging (fMRI) experiments at 4 Tesla was studied with a simple finger-opposition task. Six subjects performed three runs in one session, and each run was analyzed separately with the t-test as a univariate method and Fisher's linear discriminant analysis as a multivariate method. Detrending with a first-and third-order polynomial as well as logarithmic transformation as preprocessing steps for the t-test were tested for their impact on reproducibility. Reproducibility across the whole brain was studied by using scatter plots of statistical values and calculating the correlation coefficient between pairs of activation maps. In order to compare reproducibility of ''activated'' voxels across runs, subjects and models, 2% of all voxels in the brain with the highest statistical values were classified as activated. The analysis of reproducible activated voxels was performed for the whole brain and within regions of interest. We found considerable variability in reproducibility across subjects, regions of interest, and analysis methods. The t-test on the linear detrended data yielded better reproducibility than Fisher's linear discriminant analysis, and therefore seems to be a robust although conservative method. Preliminary data indicate that these modeling results may be reversed by preprocessing to reduce respiratory and cardiac physiological noise effects. The reproducibility of both the position and number of activated voxels in the sensorimotor cortex was highest, while that of the supplementary motor area was much lower, with reproducibility of the cerebellum falling in between the other two areas

    MicroRNA-138 is a potential regulator of memory performance in humans

    Get PDF
    Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate "memory genes," these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs) associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA) hsa-mir-138-5p (rs9882688, P-value = 7.8 x 10(-9)). Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5 x 10(-4)). In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3' untranslated region (3' UTR) of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3' UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866). Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of human memory function

    Psychotherapeutic Group Intervention for Traumatized Male Refugees Using Imaginative Stabilization Techniques—A Pilot Study in a German Reception Center

    Get PDF
    Background: Due to persecution, human rights violations and armed conflicts, the prevalence of post-traumatic stress disorder (PTSD) is high in refugee populations. Previous studies indicate that trauma-focused treatments are highly effective in treating PTSD in refugees. However, these approaches rely on the stability of the therapeutic setting, treatment continuity, and safe housing. Although early treatment of PTSD is recommended, these requirements are not met in reception centers. Therefore, we conducted a pilot study to examine the effect of imaginative stabilization techniques derived from psychodynamic psychotraumatology therapy for the early stabilization of traumatized refugees in a reception center.Methods: From May 2017 to April 2018, 86 imaginative stabilization group therapy sessions have taken place. A sample of 43 out of 46 traumatized refugees completed self-report questionnaires assessing PTSD, depression, and anxiety symptoms prior to attending open imaginative stabilization group therapy sessions. Furthermore, participants filled in self-report questionnaires on distress and emotional state (valence/arousal/dominance) before and after each session. After having participated in four consecutive sessions, a sub-group of 17 participants completed a follow-up assessment of PTSD, depression, and anxiety symptoms. Follow-up interviews were conducted with 25 participants 2 weeks after their last session attendance to explore self-practice habits post intervention.Results: The pre-post-intervention comparison of scores indicated a significant reduction of distress (z = −3.35, p < 0.001, r = −0.51) and an improvement of affective reports for valence (z = −4.79, p < 0.001, r = −0.82) and dominance (z = −3.89, p < 0.001, r = −0.59), whereas arousal scores were not affected. We found a significant reduction of anxiety symptoms (z = −2.04, p < 0.05, r = −0.49), whereas PTSD and depression scores remained unchanged. Follow-up interviews revealed that 80% of the participants continued to practice the imaginative stabilization techniques after redistribution to other accommodation.Conclusion: The results indicate that imaginative stabilization techniques are a promising and feasible approach to treat refugees in unstable reception center settings. In regular imaginative stabilization group therapy sessions, we were able to reduce the participants' distress and anxiety symptoms while strengthening their internal resources and increasing their emotional stability

    Optimizing Preprocessing and Analysis Pipelines for Single-Subject fMRI: 2. Interactions with ICA, PCA, Task Contrast and Inter-Subject Heterogeneity

    Get PDF
    A variety of preprocessing techniques are available to correct subject-dependant artifacts in fMRI, caused by head motion and physiological noise. Although it has been established that the chosen preprocessing steps (or “pipeline”) may significantly affect fMRI results, it is not well understood how preprocessing choices interact with other parts of the fMRI experimental design. In this study, we examine how two experimental factors interact with preprocessing: between-subject heterogeneity, and strength of task contrast. Two levels of cognitive contrast were examined in an fMRI adaptation of the Trail-Making Test, with data from young, healthy adults. The importance of standard preprocessing with motion correction, physiological noise correction, motion parameter regression and temporal detrending were examined for the two task contrasts. We also tested subspace estimation using Principal Component Analysis (PCA), and Independent Component Analysis (ICA). Results were obtained for Penalized Discriminant Analysis, and model performance quantified with reproducibility (R) and prediction metrics (P). Simulation methods were also used to test for potential biases from individual-subject optimization. Our results demonstrate that (1) individual pipeline optimization is not significantly more biased than fixed preprocessing. In addition, (2) when applying a fixed pipeline across all subjects, the task contrast significantly affects pipeline performance; in particular, the effects of PCA and ICA models vary with contrast, and are not by themselves optimal preprocessing steps. Also, (3) selecting the optimal pipeline for each subject improves within-subject (P,R) and between-subject overlap, with the weaker cognitive contrast being more sensitive to pipeline optimization. These results demonstrate that sensitivity of fMRI results is influenced not only by preprocessing choices, but also by interactions with other experimental design factors. This paper outlines a quantitative procedure to denoise data that would otherwise be discarded due to artifact; this is particularly relevant for weak signal contrasts in single-subject, small-sample and clinical datasets

    Influence of the postoperative inflammatory response on cognitive decline in elderly patients undergoing on-pump cardiac surgery: a controlled, prospective observational study

    Get PDF
    BACKGROUND: The role of non-infective inflammatory response (IR) in the aetiology of postoperative cognitive dysfunction (POCD) is still controversial. The aim of this controlled, prospective observational study was to assess the possible relationship between the grade of IR, defined by procalcitonin (PCT) changes, and development of POCD related to cardiac surgery. METHODS: Forty-two patients, who were >/= 60 years of age and scheduled for elective cardiac surgery, were separated into the low inflammatory (LIR) and high inflammatory (HIR) response groups based on their PCT levels measured on the first postoperative day. A matched normative control group of 32 subjects was recruited from primary care practice. The PCT and C-reactive protein (CRP) levels were monitored daily during the first five postoperative days. The cognitive function and mood state were preoperatively tested with a set of five neurocognitive tests and two mood inventories and at the seventh postoperative day. The Reliable Change Index modified for practice (RCIp) using data from normative controls was applied to determine the significant decline in test performance. RESULTS: The LIR (n = 20) and HIR (n = 22) groups differed significantly in the PCT (p 0.05). Additionally, there was no difference in the mood states, anxiety levels and perioperative parameters known to influence the development of POCD. CONCLUSIONS: In this study, the magnitude of the non-infective inflammatory response generated by on-pump cardiac surgery did not influence the development of POCD in the early postoperative period in elderly patients

    Estimating density and detection of bobcats in fragmented midwestern landscapes using spatial capture–recapture data from camera traps

    Get PDF
    Camera‐trapping data analyzed with spatially explicit capture–recapture (SCR) models can provide a rigorous method for estimating density of small populations of elusive carnivore species. We sought to develop and evaluate the efficacy of SCR models for estimating density of a presumed low‐density bobcat (Lynx rufus) population in fragmented landscapes of west‐central Illinois, USA. We analyzed camera‐trapping data from 49 camera stations in a 1,458‐km2 area deployed over a 77‐day period from 1 February to 18 April 2017. Mean operational time of cameras was 52 days (range = 32–67 days). We captured 23 uniquely identifiable bobcats 113 times and recaptured these same individuals 90 times; 15 of 23 (65.2%) individuals were recaptured at ≥2 camera traps. Total number of bobcat capture events was 139, of which 26 (18.7%) were discarded from analyses because of poor image quality or capture of only a part of an animal in photographs. Of 113 capture events used in analyses, 106 (93.8%) and 7 (6.2%) were classified as positive and tentative identifications, respectively; agreement on tentative identifications of bobcats was high (71.4%) among 3 observers. We photographed bobcats at 36 of 49 (73.5%) camera stations, of which 34 stations were used in analyses. We estimated bobcat density at 1.40 individuals (range = 1.00–2.02)/100 km 2. Our modeled bobcat density estimates are considerably below previously reported densities (30.5 individuals/100 km 2) within the state, and among the lowest yet recorded for the species. Nevertheless, use of remote cameras and SCR models was a viable technique for reliably estimating bobcat density across west‐central Illinois. Our research establishes ecological benchmarks for understanding potential effects of colonization, habitat fragmentation, and exploitation on future assessments of bobcat density using standardized methodologies that can be compared directly over time. Further application of SCR models that quantify specific costs of animal movements (i.e., least‐cost path models) while accounting for landscape connectivity has great utility and relevance for conservation and management of bobcat populations across fragmented Midwestern landscapes

    Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Get PDF
    Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities

    LC/MS-Based Quantitative Proteomic Analysis of Paraffin-Embedded Archival Melanomas Reveals Potential Proteomic Biomarkers Associated with Metastasis

    Get PDF
    BACKGROUND: Melanoma metastasis status is highly associated with the overall survival of patients; yet, little is known about proteomic changes during melanoma tumor progression. To better understand the changes in protein expression involved in melanoma progression and metastasis, and to identify potential biomarkers, we conducted a global quantitative proteomic analysis on archival metastatic and primary melanomas. METHODOLOGY AND FINDINGS: A total of 16 metastatic and 8 primary cutaneous melanomas were assessed. Proteins were extracted from laser captured microdissected formalin fixed paraffin-embedded archival tissues by liquefying tissue cells. These preparations were analyzed by a LC/MS-based label-free protein quantification method. More than 1500 proteins were identified in the tissue lysates with a peptide ID confidence level of >75%. This approach identified 120 significant changes in protein levels. These proteins were identified from multiple peptides with high confidence identification and were expressed at significantly different levels in metastases as compared with primary melanomas (q-Value<0.05). CONCLUSIONS AND SIGNIFICANCE: The differentially expressed proteins were classified by biological process or mapped into biological system networks, and several proteins were implicated by these analyses as cancer- or metastasis-related. These proteins represent potential biomarkers for tumor progression. The study successfully identified proteins that are differentially expressed in formalin fixed paraffin-embedded specimens of metastatic and primary melanoma
    corecore