373 research outputs found

    Global three-parameter model for neutrino oscillations using Lorentz violation

    Get PDF
    A model of neutrino oscillations is presented that has only three degrees of freedom and is consistent with existing data. The model is a subset of the renormalizable sector of the Standard-Model Extension (SME), and it offers an alternative to the standard three-neutrino massive model. All classes of neutrino data are described, including solar, reactor, atmospheric, and LSND oscillations. The disappearance of solar neutrinos is obtained without matter-enhanced oscillations. Quantitative predictions are offered for the ongoing MiniBooNE experiment and for the future experiments OscSNS, NOvA, and T2K.Comment: 12 pages REVTe

    Tests of Lorentz violation in muon antineutrino to electron antineutrino oscillations

    Get PDF
    A recently developed Standard-Model Extension (SME) formalism for neutrino oscillations that includes Lorentz and CPT violation is used to analyze the sidereal time variation of the neutrino event excess measured by the Liquid Scintillator Neutrino Detector (LSND) experiment. The LSND experiment, performed at Los Alamos National Laboratory, observed an excess, consistent with neutrino oscillations, of νˉe{\bar\nu}_e in a beam of νˉμ{\bar\nu}_\mu. It is determined that the LSND oscillation signal is consistent with no sidereal variation. However, there are several combinations of SME coefficients that describe the LSND data; both with and without sidereal variations. The scale of Lorentz and CPT violation extracted from the LSND data is of order 10−1910^{-19} GeV for the SME coefficients aLa_L and E×cLE \times c_L. This solution for Lorentz and CPT violating neutrino oscillations may be tested by other short baseline neutrino oscillation experiments, such as the MiniBooNE experiment.Comment: 10 pages, 10 figures, 2 tables, uses revtex4 replaced with version to be published in Physical Review D, 11 pages, 11 figures, 2 tables, uses revtex

    Neutrino-induced pion production from nuclei at medium energies

    Get PDF
    We present a fully relativistic formalism for describing neutrino-induced Δ\Delta-mediated single-pion production from nuclei. We assess the ambiguities stemming from the Δ\Delta interactions. Variations in the cross sections of over 10% are observed, depending on whether or not magnetic-dipole dominance is assumed to extract the vector form factors. These uncertainties have a direct impact on the accuracy with which the axial-vector form factors can be extracted. Different predictions for C5A(Q2)C_5^A(Q^2) induce up to 40-50% effects on the Δ\Delta-production cross sections. To describe the nucleus, we turn to a relativistic plane-wave impulse approximation (RPWIA) using realistic bound-state wave functions derived in the Hartree approximation to the σ\sigma-ω\omega Walecka model. For neutrino energies larger than 1 GeV, we show that a relativistic Fermi-gas model with appropriate binding-energy correction produces comparable results as the RPWIA which naturally includes Fermi motion, nuclear-binding effects and the Pauli exclusion principle. Including Δ\Delta medium modifications yields a 20 to 25% reduction of the RPWIA cross section. The model presented in this work can be naturally extended to include the effect of final-state interactions in a relativistic and quantum-mechanical way. Guided by recent neutrino-oscillation experiments, such as MiniBooNE and K2K, and future efforts like MINERν\nuA, we present Q2Q^2, WW, and various semi-inclusive distributions, both for a free nucleon and carbon, oxygen and iron targets.Comment: 25 pages, 14 figure

    The OscSNS White Paper

    Full text link
    There exists a need to address and resolve the growing evidence for short-baseline neutrino oscillations and the possible existence of sterile neutrinos. Such non-standard particles require a mass of ∼1\sim 1 eV/c2^2, far above the mass scale associated with active neutrinos, and were first invoked to explain the LSND νˉμ→νˉe\bar \nu_\mu \rightarrow \bar \nu_e appearance signal. More recently, the MiniBooNE experiment has reported a 2.8σ2.8 \sigma excess of events in antineutrino mode consistent with neutrino oscillations and with the LSND antineutrino appearance signal. MiniBooNE also observed a 3.4σ3.4 \sigma excess of events in their neutrino mode data. Lower than expected neutrino-induced event rates using calibrated radioactive sources and nuclear reactors can also be explained by the existence of sterile neutrinos. Fits to the world's neutrino and antineutrino data are consistent with sterile neutrinos at this ∼1\sim 1 eV/c2^2 mass scale, although there is some tension between measurements from disappearance and appearance experiments. In addition to resolving this potential major extension of the Standard Model, the existence of sterile neutrinos will impact design and planning for all future neutrino experiments. It should be an extremely high priority to conclusively establish if such unexpected light sterile neutrinos exist. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, built to usher in a new era in neutron research, provides a unique opportunity for US science to perform a definitive world-class search for sterile neutrinos.Comment: This white paper is submitted as part of the SNOWMASS planning proces
    • …
    corecore