4 research outputs found

    Convective and Wave Signatures in Ozone Profiles Over the Equatorial Americas: Views from TC4 (2007) and SHADOZ

    Get PDF
    During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer

    A Side by Side Comparison of Filter-Based PM(sub 2.5) Measurements at a Suburban Site: A Closure Study

    No full text
    Reliable determination of the effects of air quality on public health and the environment requires accurate measurement of PM(sub 2.5) mass and the individual chemical components of fine aerosols. This study seeks to evaluate PM(sub 2.5) measurements that are part of a newly established national network by comparing them with a more conventional sampling system. Experiments were carried out during 2002 at a suburban site in Maryland, United States, where two samplers from the U.S. Environmental Protection Agency (USEPA) Speciation Trends Network: Met One Speciation Air Sampling System STNS and Thermo Scientific Reference Ambient Air Sampler STNR, two Desert Research Institute Sequential Filter Samplers DRIF, and a continuous TEOM monitor (Thermo Scientific Tapered Element Oscillating Microbalance) were sampling air in parallel. These monitors differ not only in sampling configuration but also in protocol-specific sample analysis procedures. Measurements of PM(sub 2.5) mass and major contributing species were well correlated among the different methods with r-values > 0.8. Despite the good correlations, daily concentrations of PM(sub 2.5) mass and major contributing species were significantly different at the 95% confidence level from 5 to 100% of the time. Larger values of PM(sub 2.5) mass and individual species were generally reported from STNR and STNS. The January STNR average PM(sub 2.5) mass (8.8 (micro)g/per cubic meter) was 1.5 (micro)g/per cubic meter larger than the DRIF average mass. The July STNS average PM(sub 2.5) mass (27.8 (micro)g/per cubic meter) was 3.8 (micro)g/per cubic meter larger than the DRIF average mass. These differences can only be partially accounted for by known random errors. Variations in flow control, face velocity, and sampling artifacts likely influence the measurement of PM(sub 2.5) speciation and mass closure. Simple statistical tests indicate that the current uncertainty estimates used in the STN network may underestimate the actual uncertainty

    Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 1. Summertime upper troposphere/lower stratosphere ozone over northeastern North America

    No full text
    Coordinated ozonesonde launches from the Intercontinental Transport Experiment (INTEX) Ozonesonde Network Study (IONS) (http://croc.gsfc.nasa.gov/intex/ions.html) in July-August 2004 provided nearly 300 O3 profiles from eleven North American sites and the R/V Ronald H. Brown in the Gulf of Maine. With the IONS period dominated by low-pressure conditions over northeastern North America (NENA), the free troposphere in that region was frequently enriched by stratospheric O3. Stratospheric O3 contributions to the NENA tropospheric O3 budget are computed through analyses of O3 laminae (Pierce and Grant, 1998; Teitelbaum et al., 1996), tracers (potential vorticity, water vapor), and trajectories. The lasting influence of stratospheric incursions into the troposphere is demonstrated, and the computed stratospheric contribution to tropospheric column O3 over the R/V Ronald H. Brown and six sites in Michigan, Virginia, Maryland, Rhode Island, and Nova Scotia, 23% ± 3%, is similar to summertime budgets derived from European O3 profiles (Collette and Ancellet, 2005). Analysis of potential vorticity, Wallops ozonesondes (37.9°N, 75.5°W), and Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) O3 profiles for NENA airports in June-July-August 1996–2004 shows that the stratospheric fraction in 2004 may be typical. Boundary layer O3 at Wallops and northeast U.S. sites during IONS also resembled O3 climatology (June-July-August 1996–2003). However, statistical classification of Wallops O3 profiles shows the frequency of profiles with background, nonpolluted boundary layer O3 was greater than normal during IONS
    corecore