39 research outputs found

    A model study for tethering of (bio)active molecules to biomaterial surfaces through arginine

    No full text
    A new approach for tethering of bioactive molecules via arginine is proposed and validated on collagen 2D matrices. The method involves the introduction of a methyl ketone on arginine side-chains, followed by reaction with model alkoxyamino derivatives

    Carbohydrate-functionalized collagen matrices: design and characterization of a novel neoglycosylated biomaterial

    No full text
    Collagen matrices have been neoglycosylated with lactose by reductive amination at lysine side chains. AFM analysis highlights that the chemical does not affect molecular assembly into fibrils. Moreover, ELLA biochemical assays show that the glycan moiety is efficiently exposed on the matrix surface for receptor recognition

    Effects of the protein corona on liposome–liposome and liposome–cell interactions

    No full text
    Claudia Corbo,1,2 Roberto Molinaro,1 Francesca Taraballi,1 Naama E Toledano Furman,1 Michael B Sherman,3 Alessandro Parodi,1 Francesco Salvatore,2,4 Ennio Tasciotti1,5 1Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA; 2CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy; 3Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; 4Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; 5Department of Orthopedics, Houston Methodist Hospital, Houston, TX, USA Abstract: A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes’ physical properties and, consequently, liposome–liposome and liposome–cell interactions. Keywords: liposomes, protein corona, macrophages, cancer cell

    Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner

    No full text
    Antonina Orlando,1 Emanuela Cazzaniga,1 Maria Tringali,2 Francesca Gullo,3 Andrea Becchetti,3 Stefania Minniti,1 Francesca Taraballi,4,5 Ennio Tasciotti,4,5 Francesca Re1 1Nanomedicine Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, 2Department of Environmental Sciences, 3Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy; 4Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 5Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA Purpose: Mesoporous silica nanoparticles (MSNPs) are excellent candidates for biomedical applications and drug delivery to different human body areas, the brain included. Although toxicity at cellular level has been investigated, we are still far from using MSNPs in the clinic, because the mechanisms involved in the cellular responses activated by MSNPs have not yet been elucidated.Materials and methods: This study used an in vitro multiparametric approach to clarify relationships among size, dose, and time of exposure of MSNPs (0.05–1 mg/mL dose range), and cellular responses by analyzing the morphology, viability, and functionality of human vascular endothelial cells and neurons.Results: The results showed that 24 hours of exposure of endothelial cells to 250 nm MSNPs exerted higher toxicity in terms of mitochondrial activity and membrane integrity than 30 nm MSN at the same dose. This was due to induced cell autophagy (in particular mitophagy), probably consequent to MSNP cellular uptake (>20%). Interestingly, after 24 hours of treatment with 30 nm MSNPs, very low MSNP uptake (<1%) and an increase in nitric oxide production (30%, P<0.01) were measured. This suggests that MSNPs were able to affect endothelial functionality from outside the cells. These differences could be attributed to the different protein-corona composition of the MSNPs used, as suggested by sodium dodecyl sulfate polyacrylamide-gel electrophoresis analysis of the plasma proteins covering the MSNP surface. Moreover, doses of MSNPs up to 0.25 mg/mL perturbed network activity by increasing excitability, as detected by multielectrode-array technology, without affecting neuronal cell viability.Conclusion: These results suggest that MSNPs may be low-risk if prepared with a diameter <30 nm and if they reach human tissues at doses <0.25 mg/mL. These important advances could help the rational design of NPs intended for biomedical uses, demonstrating that careful toxicity evaluation is necessary before using MSNPs in patients. Keywords: mesoporous silica nanoparticles, nanotoxicity, endothelial cells, neurons, brain&nbsp

    Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis

    No full text
    The challenge of mimicking the extracellular matrix with artificial scaffolds that are able to reduce immunoresponse is still unmet. Recent findings have shown that mesenchymal stem cells (MSC) infiltrating into the implanted scaffold have effects on the implant integration by improving the healing process. Toward this aim, a novel polyamidoamine-based nanocomposite hydrogel is synthesized, cross-linked with porous nanomaterials (i.e., mesoporous silica nanoparticles), able to release chemokine proteins. A comprehensive viscoelasticity study confirms that the hydrogel provides optimal structural support for MSC infiltration and proliferation. The efficiency of this hydrogel, containing the chemoattractant stromal cell-derived factor 1\u3b1 (SDF-1\u3b1), in promoting MSC migration in vitro is demonstrated. Finally, subcutaneous implantation of SDF-1\u3b1-releasing hydrogels in mice results in a modulation of the inflammatory reaction. Overall, the proposed SDF-1\u3b1-nanocomposite hydrogel proves to have potential for applications in tissue engineering
    corecore