145 research outputs found
Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats
The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II). The blood and urine mercury levels of rats fed with a diet containing Hg (II) and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II) in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system
De Novo Assembly of Mud Loach (Misgurnus anguillicaudatus) Skin Transcriptome to Identify Putative Genes Involved in Immunity and Epidermal Mucus Secretion
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus.Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus
Contribution of exopeptidases to formation of nonprotein nitrogen during ensiling of alfalfa
The experiment was conducted to investigate the exopeptidase classes in alfalfa (Medicago sativa L.) leaves, and to determine their contribution to the formation of nonprotein nitrogen (NPN) components during ensiling. Six classes of inhibitors that included bestatin (aminopeptidase inhibitor), potato carboxypeptidase inhibitor (PCI, carboxypeptidase inhibitor), 1,10-phenanthroline (dipeptidase inhibitor), diprotin A (dipeptidyl-peptidase inhibitor), butabindide (tripeptidyl-peptidase inhibitor), and dipeptide Phe-Arg (peptidyl-dipeptidase inhibitor) were used. To determine the contribution of each exopeptidase to the formation of NPN products, aqueous extracts of fresh alfalfa were fermented to imitate the proteolytic process of ensiled alfalfa and to ensure that each class of exopeptidase inhibitor would have immediate contact with the proteases in the alfalfa extract. Five classes of exopeptidases; namely, aminopeptidase, carboxypeptidase, dipeptidase, dipeptidyl-peptidase, and tripeptidyl-peptidase, were shown to be present in alfalfa leaves, each playing a different role in alfalfa protein degradation. Aminopeptidase, carboxypeptidase, and dipeptidase were the main exopeptidases contributing to the formation of NH3-N. Among the 5 exopeptidases, tripeptidyl-peptidase appeared to be the principal exopeptidase in hydrolyzing forage protein into peptides, whereas carboxypeptidase and dipeptidase appeared to be more important in contributing to the formation of amino acid-N. Dipeptidyl-peptidase and tripeptidyl-peptidase did not play a role in the formation of NH3-N or amino acid-N. Dipeptidase, carboxypeptidase, and tripeptidyl-peptidase were the principal exopeptidases for hydrolyzing forage protein into NPN during ensilage, and treatment with a mixture of the 5 inhibitors reduced the total NPN concentration in the fermented alfalfa extract to about 45% of that in the control after 21 d of fermentation
Biphenyls from aerial parts of Ribes takare
Three new biphenyls, 4,7,8-trimethoxy-2,3-methylenedioxydibenzofuran (1), 7-hydroxy-4,8dimethoxy-2,3-methylenedioxydibenzofuran (2), and 3',5-dimethoxy-3,4-methylenedioxybiphenyl (3), along with eighteen known compounds (4-21) were isolated from the aerial part of Ribes takare D. Don. Their structures were elucidated on the basis of spectroscopic data. Compound 1 and compound 2 showed mild alpha-glucosidase inhibitory activity. (C) 2013 Guo-You Li and Dong-Mei Fang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved
Sediment incipience in turbulence generated in a square tank by a vertically oscillating grid
The failure of hydraulic structures in many estuaries and coastal regions around the world has been attributed to sediment transport and local scour. The sediment incipience in homogenous turbulence generated by oscillating grid is studied in this paper. The turbulent flow is measured by particle tracer velocimetry (PTV) technique. The integral length scale and time scale of turbulence are obtained. The turbulent flow near the wall is measured by local optical magnification. The sediment incipience is described by static theory. The relationship of probability of sediment incipience and the turbulent kinetic energy were obtained experimentally and theoretically. The distribution of the turbulent kinetic energy near the wall is found to obey the power law and the turbulent energy is further identified as the dynamic mechanism of sediment incipience
Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt
Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
Promoting extrinsic bridging of adhesively-bonded CFRP joints through the adhesive layer architecture
Carbon fiber-reinforced polymers (CFRPs) have widely attracted the aerospace and automotive industries due to high stiffness and lightweight. Secondary adhesive bonding of CFRPs is a promising research field to fully explore their potential. However, multiple challenges have limited the further application of adhesively-bonded composite joints since it is difficult to inspect the premature debonding, which leads to catastrophic failure once initiated. Thus, it is crucial to introduce crack arrest features, to slow down (or even stop) the crack growth and achieve progressive failure. Various methods have been reported to introduce crack arrest features, including z-pins and corrugated substrates. Our previous work directly utilized the adhesive layer to bridge the separating CFRP parts, through the extrinsic bridging of adhesive ligaments. The bridging adhesive ligaments are triggered by the patterning of distinct surface treatments. These extrinsic bridging ligaments largely enhance the energy release rate (ERR) and successfully arrest the crack propagation. However, a large portion of the required energy for the further crack propagation is stored elastically in the stretching ligaments, which would cause catastrophic fast joint debonding after the failure of ligaments. In this work, the adhesive layer was architected in order to improve its plasticity. By promoting the plastic energy dissipation, the bridging, stretching, and failure of generated adhesive ligaments could result in tougher and safer joints. CFRP substrates were alternatively patterned by two distinct surface treatments to achieve different interfacial strength and toughness values. Then, double-cantilever beams (DCB) were manufactured by bonding treated substrates with the architected adhesive material, such as integrating 3D-printed nylon wires or newly synthesized adhesive material. Results showed that the proposed joint toughening strategy could improve ERR compared to conventional uniform treatments and increasd adhesive plasticity could also stabilize the crack propagation, leading to a safer joint.Structural Integrity & Composite
Acoustic emission approach for identifying fracture mechanisms in composite bonded Joints: A study on varying Substrate's stacking sequence
This study uses the acoustic emission structural health monitoring method to identify fracture mechanisms in composite bonded joints when varying the substrate stacking sequence. Quasi-static mode I loading tests were performed on secondary adhesively bonded multidirectional composite substrates (0, 90, 45, −45, 60 and −60° fibre orientations). An unsupervised artificial neural network combined with the visual fracture evaluation of the specimens and the Morlet continuous wavelet transform was used to cluster and give the acoustic emission signals a physical meaning. Different fracture mechanisms could be identified within the adhesive layer (i.e., cohesive failure) and in the composite substrates, including non-visible damage mechanisms (matrix micro-cracking, fibre/matrix debonding, fibre pull-out and fibre breakage). Using the Morlet continuous wavelet transform, it was possible to recognise that the highest peak frequency does not always represent the most relevant signature of the fracture mechanism. Moreover, multiple peak frequencies can be associated with multiple fracture mechanisms, such as the fibre pull-out that occurs in the combination of matrix cracking and fibre breakage. Furthermore, no differences were observed in mode I loading conditions between the acoustic emission signatures from the cohesive failure in the adhesive layer and the matrix cracking within the composite substrate. The findings of this study present a great opportunity to gain more insight into the fracture behaviour of polymer materials and fibre-reinforced polymer materials and to improve the quality of adhesively bonded joints.Group DransfeldQN/AfdelingsbureauGroup Teixeira De Freita
Dynamic model-based method for the analysis of ship behavior in marine traffic situation
With the continual development of modern transportation technology and artificial intelligence technology, how to recognize the complex phenomenon of ship behavior existing in maritime traffic has become a hot topic. Maritime traffic is a complex system, the emergence of ship behavior is a leading cause of traffic complexity, and make up the core ideas of this research. This research studies ship behavior from three aspects: ship individual behavior, ship-ship interaction and multi-ship behavior. According to the movement state attribute, the improved Social Force Model has been developed by considering of the interactive effects between ships. On that foundation, the complex network model has been built to analyze the emergence of multi-ship behavior in a macroscopic view. Through experimental analysis of ship behavior in different scenarios, the results show that the repulsive force between ships changes in the ship behavior dynamic model can express the dynamic characteristics of the ship. And structural entropy in marine traffic situation complex network has been proved to describe the maritime traffic system. As such, the framework proposed in this paper can provide a new perspective for further understanding and research of ship behavior.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Transport Engineering and LogisticsSafety and Security Scienc
Semantic Modeling of Ship Behavior in Cognitive Space
Ship behavior is the semantic expression of corresponding trajectory in spatial-temporal space. The intelligent identification of ship behavior is critical for safety supervision in the waterborne transport. In particular, the complicated behavior reflects the long-term intentions of a ship, but it is challenging to recognize it automatically for computers without a proper understanding. For this purpose, this study provides a method to model the behavior for computers from the perspective of knowledge modeling that is explainable. Based on our previous work, a semantic model for ship behavior representation is given considering the multi-scale features of ship behavior in cognitive space. Firstly, the multi-scale features of ship behavior are analyzed in spatial-temporal dimension and semantic dimension individually. Then, a method for multi-scale behaviors modeling from the perspective of semantics is determined, which divides the behavior scale into four sub-scales in cognitive space, considering spatial and temporal dimensions: action, activity, process, and event. Furthermore, an ontology model is introduced to construct the multi-scale semantic model for ship behavior, where behaviors with different semantic scales are expressed using the functions of ontology from a microscopic perspective to a macroscopic perspective consecutively. To validate the model, a case study is conducted in which ship behavior with different scales occurred in port water areas. Typical behaviors, which include leveraging the axioms expression and semantic web rule language (SWRL) of the ontology, are then deduced using a reasoner, such as Pellet. The results show that the model is reasonable and feasible to represent multi-scale ship behavior in various scenarios and provides the potential to construct a smart supervision network for maritime authorities.Safety and Security Scienc
- …