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Abstract

Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformation-
induced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of
Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4–11% Fe), and from fcc to
body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and
triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline
intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in
SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic
level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrys-
talline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nanocrystalline (nc) metals and alloys produced by
methods based on severe plastic deformation (SPD) have
been studied extensively over the past decade. Various
SPD variants have been developed, such as equal-channel
angular pressing (ECAP) [1,2], high-pressure torsion
(HPT) [1], accumulated roll bonding (ARB) [3], slide load-
ing [4] and surface mechanical attrition treatment (SMAT)
[5,6].

It has been recognized that nc materials exhibit superior
diffusion properties [7,8]. From experimental results and
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theoretical models it follows that the highly enhanced diffu-
sion kinetics in nc materials is related to the much
increased portions of grain boundaries (GBs) and triple
junctions (TJs) [9–17]. The GBs in nc materials by SPD
are in high-energy, non-equilibrium states, making them
the rapid diffusion paths [7,10]. Diffusion coefficients asso-
ciated with such GBs could be several orders of magnitude
larger than those in the nc materials fabricated by more
equilibrium methods (such as hot-consolidation of nc pow-
ders), as well as in conventional polycrystallites [7]. On the
other hand, TJs are believed to have a more open structure
than GBs, and consequently they should have higher diffu-
sivity [17–19]. Diffusion along TJs should dominate in nc
materials with grain sizes less than �10 nm, where the vol-
ume fraction of TJs is significantly increased [17–20].
rights reserved.
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It is therefore reasonable to believe that the various
types of high-density defects created during SPD signifi-
cantly contribute to the much enhanced diffusion kinetics
in SPD nanomaterials. For example, dislocations can pro-
vide pipe diffusion mechanisms through dislocation cores
serving as solute pumps [21,22]. The global diffusion kinet-
ics will then be an increasing function of the dislocation
density. According to the Taylor law, which links the dislo-
cation density in a metal to its flow stress, therefore, diffu-
sion kinetics can be accelerated by increased flow stresses.
Meanwhile, plastic deformation may induce vacancies
and increase the mobile vacancy concentration [23–25].
The increased vacancy concentrations by SPD may lead
to pronounced enhancement of diffusion kinetics [24,25].
The excess, non-equilibrium vacancies created by SPD
can be understood on the basis of interactions of disloca-
tions, e.g. jog dragging and dipole annihilation [26,27].
As such, the mobile vacancy concentration will be propor-
tional to both the imposed strain rate and the dislocation
density [28,29].

Diffusion enhancement by SPD may thus promote the
formation of a wide spectrum of highly non-equilibrium
states in nc materials, provided other necessary conditions
are given. As a result of HPT, for instance, the formation
of supersaturated solid solutions in immiscible Al–Fe
alloys and pearlitic steels [30,31], disordering or even amor-
phization of intermetallics [32] and alloying in the immisci-
ble Cu–Fe composite [24] have been reported. Similar
events have been observed in powder mixtures processed
by mechanical alloying (MA) [33–36]. In MA of ductile
metals, the powder particles trapped between the colliding
balls and the vial walls undergo simultaneous deformation,
fragmentation and cold welding, resulting in agglomerates
of multilayered structures with clean interfaces. Inter-diffu-
sion in such aggregates often leads to an extension of the
solid solution limits beyond the equilibrium ones, and the
formation of nc alloys, intermetallic compounds and amor-
phous phases.

A careful examination of the documented investigations
related to SPD suggests, however, that one important issue
has been largely overlooked, and is therefore poorly under-
stood. This issue pertains to the kinetics of the diffusion-
related processes during SPD. In particular, as we have
alluded in the preceding paragraphs, diffusion processes
are strongly coupled with generation of crystal defects,
such as dislocations, GBs and TJs.

From what we have laid out in the above comes the
theme of the present study: SPD-enhanced diffusion and,
as a result, formation of nc intermetallic compound and
various types of solid solutions. Here we report the produc-
tion by SMAT of an nc intermetallic layer on the surface of
bulk cobalt bases. Our strategy was to incur greatly
enhanced diffusion during SPD that leads to a non-equilib-
rium and rapid alloying process, which eventually leads to
the formation of an nc intermetallic compound layer. The
microstructural evolution as a function of the imposed
strain, including the extension of the solid solutions, phase
transformations and formation of intermetallic com-
pounds, was systematically investigated. Discussions are
presented by taking into account factors such as grain sizes
and various types of crystal defects and their influences on
diffusion kinetics.

2. Experimental procedure

The base material for SMAT used in this study was an
electrodeposited cobalt plate (purity: 99.98 wt.%). The
average grain size was �30 lm and the dimension of the
Co-base was 100 · 100 · 5 mm3.

The details of the SMAT processing have been described
elsewhere [5,6]. In brief, the Co-base was securely seated in
a cylinder-shaped stainless steel chamber that was loaded
with a large number of hardened steel balls. The chamber
was attached to a vibration generator. During SMAT the
steel balls were resonated with the high-frequency vibra-
tions of the system. As a consequence, the energetically
moving steel balls impinged the specimen surface continu-
ously, thus imposing strains on the surface layer of the Co-
base. This leads to progressive grain refinement. Hence, in
much the same way as in MA processing, one would expect
enhanced diffusion within the surface layer caused by such
deformation processes from the bombarding of the steel
balls onto the Co-base surface [33,36]. One would also
expect the existence of both strain and strain rate gradients
as one moves away from the topmost-surface of the SMAT
specimen towards the inner depth of the Co-base. Essen-
tially, the topmost surface experiences the largest strain
and strain rates which vanish quickly into the depth of
the base material. Consequently, a grain size gradient or
other microstructural features may develop below the sur-
face of the SMAT sample [5]. This provides a wealth of
information regarding the processes that might have taken
place within this layer. Therefore, it lends us the opportu-
nity to examine the diffusion processes and their depen-
dence on strains and grain size regimes. In the present
work, the SMAT chamber was first evacuated to reduce
oxidation of the materials. SMAT was performed for
50 min in vacuum at room temperature and at a vibrating
frequency of 50 Hz. The hardened steel balls had a diame-
ter of 8 mm and a nominal composition (wt.%) of 1.35 Cr,
0.98 C, base Fe.

Following SMAT, the microstructural characterization
was performed in a scanning electron microscope (SEM)
and a field emission gun transmission electron microscope
(FEG-TEM). Both planar-view and cross-sectional thin
foils for TEM observations were prepared by means of
standard procedures, with special care taken to avoid tem-
perature rise during TEM sample preparation. Careful
local compositional analyses were conducted with
energy-dispersive X-ray (EDX) spectroscopy by using a
very small spot size (�2 nm) with a typical spectrum col-
lection time of 100 s. X-ray diffraction (XRD) analyses
were conducted to identify the phase constitutions within
the treated layer.



Fig. 2. Transverse microstructure of the treated layer. The roughened, top
layer is the top SMAT surface layer with a thickness around 20 lm. Notice
the sharp interface between the roughened top layer and the Co-base.
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3. Experimental results

3.1. Microstructures in the SMAT specimens

Fig. 1 displays the XRD patterns from the original Co-
base and a SMAT specimen. All the peaks from the
untreated base can be indexed with the hexagonal close-
packed (hcp) lattice of Co. However, these hcp peaks have
been almost completely suppressed in the XRD results of
the SMAT specimen. The XRD peaks from the SMAT sur-
face can be confidently indexed with a body-centered cubic
(bcc) phase, with the lattice constant and d-spacing match-
ing those of the intermetallic compound Co3Fe7. Based on
the XRD results, we can conclude that, during the course
of SMAT, some alloying processes have occurred on the
surface of the Co-base, which eventually result in the for-
mation of the intermetallic compound phase of Co3Fe7.
Also to be noted is the apparent broadening of the XRD
peaks of the SMAT specimen, implying very small grain
size and/or large microstrains in the specimen.

A cross-section SEM micrograph of the treated layer is
shown in Fig. 2. A layer �20 lm thick with contrast dis-
tinct from that of the Co-base can be easily observed. This
kind of interlayer structure is quite similar to those found
in MA [36]. The compositional analyses to be presented
support the XRD results given above, namely, the forma-
tion of the intermetallic compound of Co3Fe7. Notice in
Fig. 2 the subtle difference in microstructures of the
Co-base immediately below the interface and those in the
deeper Co-base.

The microstructures below the SMAT surface were
investigated by detailed cross-sectional TEM analysis.
Fig. 3a and b presents bright- and dark-field TEM images
taken from an area presumably �5 lm deep from the top
SMAT surface, showing the presence of nc grains. Fig. 3c
is the selected-area electron diffraction (SAED) pattern.
The set of rings in the SAED pattern can be indexed, as
in the case of the XRD peaks given in Fig. 1, with the
Fig. 1. X-ray diffraction patterns from the un-treated (a: bottom) Co-base
and the SMAT specimen (b: upper). Notice that the XRD peaks from the
SMAT specimen can be indexed with the bcc phase of the intermetallic
compound Co3Fe7.
bcc lattice of the intermetallic compound phase of Co3Fe7.
Fig. 3d shows the high-resolution lattice image of an nc
Co3Fe7 grain which is almost free of lattice defects. The
EDX spectrum acquired within this nanometer grain is pre-
sented in Fig. 3e, which suggests an Fe-rich phase. Quanti-
tative analyses of the EDX results, as given in the inset of
Fig. 3e, again point to the presence of the Co3Fe7 phase.
Also to be noted is the presence of a minor amount of
Cr. A very narrow grain size distribution of the intermetal-
lic compound of Co3Fe7 can be established by the histo-
gram plot of the grain sizes presented in Fig. 3f. The
average grain size is found to be �10 nm, and the majority
of the grains have sizes no larger than 10 nm. TEM obser-
vations at various depths from the top SMAT surface fur-
ther confirm the formation of the intermetallic phase of
Co3Fe7 within the treated layer down to a depth of about
�20 lm from the top SMAT surface, consistent with the
XRD results.

To understand the appearance of the intermetallic
phase, the initial stages associated with the formation of
this phase was investigated further. Fig. 4a shows the
microstructures located in close vicinity of the intermetallic
phase/Co-base interface (�20 lm deep from the top sur-
face). A number of very small Co3Fe7 grains are observed,
together with several large grains. Fig. 4b displays the cor-
responding dark-field TEM micrograph. The inset in
Fig. 4b is the microdiffraction pattern taken from grain
A. The set of diffraction spots along with the rings can
be indexed with the bcc Co3Fe7 phase. It is particularly
interesting to examine in more detail grain A in the dark-
field image of Fig. 4b. This apparently single grain actually
contains numerous extremely small nc Co3Fe7 grains,
whose sizes are hardly resolvable at such high magnifica-
tion (note the scale bar of the micrograph). Nanoscale
chemical probing of grain A by EDX within the TEM sug-
gests inhomogeneous Fe distribution, ranging from 16.27
to 57.36 at.%. This provides strong evidence that the inter-
metallic Co3Fe7 phase was nucleated directly from within a
bcc solid solution. HRTEM observations show that the
grain sizes of the nc Co3Fe7 grains within grain A in
Fig. 4 are only �3–5 nm, much smaller than those



Fig. 3. Bright-field (a) and dark-field (b) cross-sectional TEM micrographs showing the intermetallic phase of Co3Fe7 at a depth of �5 lm from the
topmost SMAT surface. (c) Corresponding SAED pattern. (d) High-resolution lattice image of a Co3Fe7 grain. The grain is almost perfect. (e) EDX
spectrum of a Co3Fe7 grain, showing the Fe rich phase composition and the minor existence of Cr. (f) Histogram of grain size distribution of the Co3Fe7

intermetallic phase.
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presented in Fig. 3a, indicative of limited grain growth dur-
ing SMAT deformation. We therefore believe that both an
extension of the solid solution between Fe and Co and
phase transformations occur prior to the eventual forma-
tion of the intermetallic phase, which will be detailed in
what follows.

3.2. Extension of solid solution and phase transformations

In order to clarify the microstructural evolution pertain-
ing to the formation of the intermetallic compound, the
interface between the intermetallic layer and the Co-base
was carefully examined via cross-sectional TEM. Fig. 5a
is a bright-field TEM micrograph taken from the interface
area of the SMAT specimen (�20 lm deep from the top
SMAT surface). A clear, drastic change in grain sizes
across the interface is observed. The submicron-sized
grains on the right-hand side of the micrograph are identi-
fied to be the hcp Co. These grains contain many stacking
faults (SFs) in their interiors. The nc grains on the left-
hand side of the micrograph are identified to be the inter-
metallic phase of Co3Fe7. Fig. 5b and c shows the SAED
patterns of the bcc Co3Fe7 and the hcp Co, respectively,
both consisting of rings which are continuous for the bcc
intermetallic phase and semi-continuous for the hcp Co.
Both SAED patterns suggest random orientations of the
grains.

Of particular interest is the finding of a ‘‘transition
zone’’ with a variety of lattice structures as well as chemical
compositions. This transition zone exists between the
Co3Fe7 intermetallic layer and the Co-base. Fig. 6 presents
the EDX spectra and the corresponding SAED patterns



Fig. 4. Bright-field (a) and dark-field (b) cross-sectional TEM micro-
graphs taken at the interface �20 lm deep. Inset in (b) is the microdif-
fraction from grain A, with the continuous ring superimposed on the
spots. Notice particularly the detailed microstructure of grain A in the
dark-field image which shows within this nc grain the existence of
extremely small nc grains. Presumably grain A is of bcc lattice structure
with the spots from the Æ111æ zone (the reflections are of course {110}).
Streaks in the {110} reflections imply strong lattice strains or the presence
of polycrystalline mosaic domains separated by small angle grain
boundaries.

Fig. 5. (a) Cross-sectional TEM micrograph taken in a region near the
interface between intermetallic layer and the Co-base (�25 lm deep from
the topmost SMAT surface). (b,c) SAED patterns of the intermetallic
phase and Co-base. Notice also in (a) the presence of stacking faults in
numerous grains of Co which have nanometer sizes.
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obtained in three grains located in three different positions
within the SMAT surface layer, with the first (Fig. 6a) clos-
est to the Co-base, the second (Fig. 6b) in between and the
last (Fig. 6c) nearest the SMAT top surface. The first dif-
fraction pattern can be easily indexed with the h�12�16i zone
of an hcp structure; the second diffraction pattern with the
Æ110æ zone of a face-centered cubic (fcc) structure; the third
with Æ159æ of a bcc structure. The associated Fe(Cr) con-
tents (at.%) as analyzed by EDX within these regions are
1.67 (0.23)%, 9.40 (1.42)% and 23.09 (1.37)%, respectively,
indicating a successive extension of solid solution and the
occurrence of a series of phase transformations as a result
of migration of Fe(Cr) into the Co-base across the transi-
tion zone.

Extensive EDX measurements with high spatial resolu-
tion show that cobalt will keep its hcp structure with
increased Fe content (at.%) of up to �3.9%; it then changes
to an fcc structure if the Fe content is 4–11%; finally, it will
transform to a bcc structure if the Fe content is further
increased. This is in line with the composition and struc-
tural analysis results presented in Fig. 6. Accordingly, we
may propose the following phase transformation sequence
that occurred in the SMAT surface layer as a function of
Fe content (at.%): hcp (<4% Fe)! fcc (4–11% Fe)! bcc
(>11% Fe). Naturally, the degree to which this sequence
has actually taken place depends on the SMAT time
allowed for the Fe atoms to migrate into the Co-base.
These results show only small deviations from the Co–Fe
equilibrium phase diagram as it is extrapolated to room
temperature regime [38,39]. The absence of any intermetal-
lic phase is noteworthy in the Co–Fe binary phase diagram,
however. EDX results of Fig. 6 indicate that Cr contents in
the solid solutions with hcp, fcc and bcc structures are
minor. They also show that Cr content is the highest in
the bcc phase (nearest the top SMAT surface), and tapers
down as one moves deeper into the specimen. We believe
the major reason for the minor amount of Cr in these
phases is the much limited source of Cr available from
the hardened steel balls.

3.3. Chemical compositions at the TJs and GBs, and within

the grains

The EDX composition analyses were made in both the
transition zone and intermetallic layer in order to shed light
on the nature of diffusion as affected by grain sizes and
other defects. Special attention is focused on effects of cer-
tain defects on diffusion kinetics. Such defects include SFs,
GBs and TJs. Fig. 7a shows deformation-induced high den-
sity SFs. These high-density SFs are believed to be the pri-
mary defects in the nc and submicron-sized cobalt grains
because of the low SF energy of Co [37]. Fig. 7b displays
a bright-field TEM micrograph taken right at the interface
between the intermetallic compound layer and the Co-base



Fig. 6. High-spatial resolution EDX spectra and the corresponding
microdiffraction patterns showing the change of the crystal structure
from hcp (a) to fcc (b) and to bcc (c) due to an increase in Fe(Cr) contents
within the ‘‘transition zone’’. Also notice that the bcc structure lies closes
to the quasi-stoichiometric Co3Fe7 phase, followed by the fcc structure.
The hcp structure is the nearest to the hcp Co-base.

Fig. 7. TEM micrographs showing: (a) high-density SFs of nc and
submicron-sized cobalt grains and (b) the interface area between the
intermetallic Co3Fe7 and the Co-base. Notice the presence of SFs in hcp
solid solution (based on EDX analysis, not shown here). (c) Non-
equilibrium GBs surrounding a bcc grain (labeled by letter A).
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(�20 lm deep from the top SMAT surface). Again SFs are
observed in the relatively large hcp grains. The presence of
a high density of SFs may contribute to enhanced diffusion
[40]. Fig. 7c is a TEM micrograph showing the nature of
GBs in the SPD specimen. The GBs surrounding a bcc
grain (A in Fig. 7c) exhibit diffused contrast, implying the
non-equilibrium and high-energy state of this grain pro-
duced by severe plastic deformation [30]. It is believed that
this kind of GB may strongly enhance the diffusion kinetics
of the material [1,10].

Fig. 8 summarizes the overall composition data as eval-
uated at the TJs, SFs and GBs, and within the grain inte-
riors (GIs) of various phases found in the SMAT layer. A
clear trend of the change in Fe (and also Cr) contents at
these locations can be established in the following order:
GIs < GBs < TJs. Of particular interesting is that, in the
hcp phase, higher Fe contents are detected at SFs than
at GBs. Fig. 9 shows Fe concentration profiles based on
more careful, nanoprobe composition analysis near SFs.
The significantly high concentrations of Fe at the SFs
strongly suggest the role of SFs as rapid diffusion paths.
This implies that solutes segregated to the SFs, or that
SFs can serve as fast diffusion paths in much the same
way as dislocation cores. In addition, Fe has been detected
both at the GBs and within the grain interiors in the hcp
grains with grain sizes even as large as �220 nm. The sig-
nificance of this observation is twofold. First, diffusion has
taken place within the SPD induced ultrafine grains. Sec-
ond, volume diffusion processes have occurred, the conse-
quence of which may not be neglected as regards their
effects on the microstructure and properties of the SMAT
specimen.



Fig. 10. Hardness profile measured by an instrumented nanoindenter on
the cross-section of the SMAT sample. Notice the drastic rise of hardness
at a depth of �25 lm from the topmost SMAT surface.

Fig. 8. Nanoprobe EDX compositional analysis results for Fe contents in the stacking faults (SFs), at the grain boundaries (GBs), within the grain
interiors (GIs) and at the triple junctions (TJs) in various phases found in the SMAT specimen. Notice that, in the hcp phase, Fe contents at the GBs and
SFs are higher than those in GIs. It is similar in other phases. Also remarkable is the much higher Fe contents at TJs than at GBs and in GIs. This is true
even for the quasi-stoichiometric intermetallic phase of Co3Fe7.

Fig. 9. Distribution of Fe near a SF ribbon from quantitative nanoprobe
EDX measurements. The measurements were made along the direction
normal to the SF interface. Given in the plot are the mean values and the
error bars associated with each location of measurement.
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3.4. Hardness profile of the SMAT layer

We have used an instrumented nanoindenter to probe
the hardness profile over the cross-section of the SMAT
specimens. Fig. 10 displays the hardness as a function of
the depth from the top SMAT surface. A sharp rise in
hardness can be observed at a depth of �25 lm from the
top SMAT surface. In other words, a very hard layer with
a thickness of �25 lm has been formed on the surface of
the SMAT Co. These results are in accordance with micro-
structural and composition analyses presented in preceding
sections in that an intermetallic Co3Fe7 layer has been
found on the SMAT surface of Co. Fig. 10 shows that
the hardness of the intermetallic layer ranges from 14 to
12 GPa, much higher than the hardness of the cobalt phase
near the interface (�6.2 GPa). However, the hardness of
the Co immediately adjacent to the interface is still more
than twice that of annealed Co, suggesting a much refined
grain size and/or the presence of defects such as disloca-
tions and stacking faults. This is also in agreement with
the microstructural analyses of previous sections, where
we found that the grain size of Co in the vicinity of the
interface is about �250 nm, and such grains contain
high-density SFs.

4. Discussion

To begin with, we present in Fig. 11 a schematic to
delineate the possible processes occurring during the
SMAT processing of the surface of the Co-base. We should
point out that such a schematic is based on the experimen-
tal results of microstructures and chemical compositions
of various regions of the SMAT processed surface. Two



Fig. 11. Schematic illustration of the microstructural evolution as a result
of diffusion during the SMAT process. Note the presence of a transition
zone containing hcp, fcc and bcc solid solutions, respectively, due to
diffusion and phase transformations that have taken place when Fe
contents reached certain levels. See text for detailed discussion.
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general processes can be identified with the assistance of
this schematic: (1) the extension of solid solution followed
by a series of phase transformations (from hcp to fcc, and
finally to bcc) in the transition zone; and (2) the formation
of the intermetallic compound of Co3Fe7 at the topmost
surface layer of the SMAT specimen. One would naturally
believe that these processes involve diffusion of various
atomic species during SMAT. Therefore, understanding
the atomic-scale diffusion process is the key to the interpre-
tation of the experimental results presented in this paper.

4.1. Diffusion along GBs, SFs and TJs

The repetitive impingements of the Co-base by the hard-
ened steel balls quickly refine the Co grains and produce
fresh ball/specimen surfaces during the SMAT process
[37]. Considering the rapid, high-frequency impact from
the steel balls, transfer of Fe and Cr or other elements to
the Co-base from the steel balls and walls of the steel con-
tainer might take place, as in the case of MA [35,38].

At first, diffusion of Fe(Cr) should occur from the top
surface of the Co-base into the Co grains (with hcp lattice
structure). As the impinging events of the steel balls on the
surface of the Co-base continuously supply Fe(Cr), this dif-
fusion process continues and the shallow surface layer of
the Co-base will be enriched by Fe in a very short time.
This will eventually lead to the formation of the intermetal-
lic compound phase rich in Fe, as confirmed by the XRD,
TEM and compositional analyses presented in the preced-
ing sections. As the SMAT process continues, the interme-
tallic compound layer will extend into the depth of the
Co-base. Quantitative EDX (Fig. 3e) suggests that the
composition of the intermetallic phase is quite close to that
of the Co3Fe7 compound, which indeed has a bcc structure.
Away from the quasi-stoichiometric Co3Fe7 phase toward
the interior of the Co-base, the contents of Fe should taper
down, and vanish at a certain depth. As such, a concentra-
tion profile is established. Depending on the Fe concentra-
tions, different lattice structures are formed. Based on the
experimental results, we presume the following phases in
the ‘‘transition zone’’: hcp (Fe content <4 at.%) immedi-
ately above the interface; fcc (Fe content between �4 and
11 at.%) in between; and bcc (Fe content >11 at.%)
between the fcc phase and the quasi-stoichiometric Co3Fe7
intermetallic phase. The existence of these phases in the
transition zone has been established by high-spatial-resolu-
tion EDX probing as well as microdiffraction analysis. The
hcp phase within the transition zone has ultrafine grain
sizes, whereas the fcc and bcc phases have grain sizes within
the range of 50–100 nm, namely, they are nanocrystalline
phases. Composition data in Fig. 8 show that the Fe con-
tents in the GBs are much higher than those in the grain
interiors. As was pointed out formerly, the GBs of the
SPD-induced fine grains are characterized by a highly
non-equilibrium and high-energy state (see e.g. Fig. 7c).
This high-energy state associated with such GBs qualifies
them as diffusion ‘‘short-circuits’’ such that defect forma-
tion energy may be lowered [13,14]. Furthermore, it has
been recognized that GB diffusion in SPD-produced mate-
rials is determined primarily by the GB state rather than by
the mean grain size [7]. Hence, fast GB diffusion may occur
even when grain sizes are above the nanometer scale, so
long as the GBs maintain their high-energy, non-equilib-
rium nature. Meanwhile, due to the much higher volume
fraction of GBs than that of TJs for relatively large grains,
it is reasonable to believe that GB diffusion should domi-
nates in the transition zone [17].

Another point of particular interest is associated with
the high-density SFs found in the hcp Co grains in the
proximity of the interface, as displayed by Figs. 5 and 7.
Nanoprobing results presented in Figs. 8 and 9 show that
Fe contents in SFs are comparable to those at the GBs,
and both higher than those in the GIs. This indicates that
SFs may contribute to fast diffusion, too, as pointed out by
Wuttig and Birnbaum [40]. Our experimental results attest
to the molecular dynamics (MD) simulations by Huang
and co-workers who found pipe diffusion in the partials’
cores of SFs due to decrease in the formation energy of
defects near the SFs [41]. In the present case, diffusion is
also closely coupled with continual formation of SFs due
to the SMAT processing. Therefore, diffusion is further
enhanced by stresses due to the repetitive bombarding of
the hardened steel balls. We hence believe that diffusion
along the GBs and SFs are the primary mass transfer
modes occurring in the hcp Co grains.

The formation of a continuous layer of Co3Fe7 interme-
tallic phase might first make one think that the diffusion
will slow down, as is the case of oxidation of Si, where a
dense, continuous layer of amorphous SiO2 phase lowers
the oxidation rate by reducing the oxygen transport rate
into the Si matrix. However, since the grain size of the
intermetallic phase is only �10 nm, the volume fraction
of both GBs and TJs will be very significant [20]. Recent
experiments by Bokstein and co-workers have demon-
strated that Zn diffusivity along TJs in Al is three orders
of magnitude higher than that along the GBs [18]. Diffu-
sion mechanism maps constructed by Chen and Schuh also
showed that TJ diffusion should be the dominant mecha-
nism within this grain size regime [17]. According to Chen
and Schuh [17], the volume fraction of GBs and TJs in nc
materials can be written as
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fGB ¼ HGB

d
d
ðaÞ and f TJ ¼ H TJ

d
d

� �2

ðbÞ ð1Þ

where d is the thickness of GBs and d is the grain size; HGB

and HTJ are dimensionless geometric parameters depend-
ing on the grain shape and grain size distribution. For
Voronoi polyhedra, which have nearly log-normal grain
size distribution, HGB and HTJ are 2.9105 and 2.5259,
respectively. An effective GB thickness can be assumed to
be �1.0 nm.

Therefore, within the thin intermetallic compound layer
of Co3Fe7 with grain size �10 nm, the volume fractions of
GBs and TJs are �30% and �3%, respectively. This evalu-
ation is close to that using the equations given in Ref. [20].

It has been recognized that intercrystalline diffusion
dominates in polycrystalline metals at low homologous
temperatures [42]. The conventional way of including con-
tributions from GB and TJ diffusion is by extending the
Hart equation [43] for the apparent (or effective) diffusion
coefficient [19]. This approach is essentially based on the
rule-of-mixture, which only represents the limiting parallel
geometry and ignores the important possibility of lateral
interconnections between the fast diffusion paths. There-
fore, it must be considered as an upper bound on the
apparent diffusivity [17]. Based on recent experimental
results on the contribution of TJs to diffusion in polycrys-
talline materials [18], Chen and Schuh revisited this impor-
tant problem by geometric considerations, and constructed
a more practical model [17,44]. Here, the intercrystalline
regions consist of GBs and TJs. The GB facets are sepa-
rated from each other by their adjoining TJs, which form
an interconnected, percolating network throughout the
specimen [17]. Chen and Schuch derived the following
equation for the intergranular diffusivity DIG:

DIG ¼ DGB þ
D2

TJ � D2
GB

DGB þ ð1þ 2f GB=fTJÞDTJ

: ð2Þ

In Eq. (2), DTJ and DGB are the diffusivities along the TJs
and GBs, respectively. According to the preceding calcula-
tions of the volume fractions of GBs and TJs based on Eq.
(1) for 10 nm grain size, and considering that at a given
temperature, DTJ/DGB is �103, DIG � (DGB + DTJ/21),
which is still dominated by the TJ term, in keeping with
the analyses by Chen and Schuh in their recent work [44].
We therefore believe that in the nc Co3Fe7 intermetallic
layer (grain size �10 nm) TJ diffusion provides the predom-
inant fluxes of atoms through this layer.

4.2. Superimposed effect of deformation on diffusion

SMAT process induces high-rate deformation in the sur-
face layer of the material being treated. High strain rates
are expected to expedite diffusion of migrating species
[24,28,29]. Diffusion may also be enhanced by deforma-
tion-induced ‘‘mechanical interdiffusion’’ [45]. As such,
there may exist two driving mechanisms, namely, concen-
tration-gradient-based and strain-potential-gradient-based.
The strain potential, lstr, defined as a function of strain,
e(z), at an arbitrary depth (z) of the treated layer, varies
with z. This variation (or gradient) also contributes to driv-
ing the diffusion events.

Hence, the total effective diffusion flux inward the Co-
base, Jtotal, can be obtained by including concentration gra-
dient and the strain potential gradient,

J total ¼ fIGJ IG þ ð1� fIGÞJ V þ J str

¼ �DIG

dC
dz
� DV

dC
dz
� Dstr

dlstr

dz
ð3Þ

where JIG, JV and Jstr are fluxes due to the intergranular re-
gions (TJs and GBs), volume diffusion solely from concentra-
tion gradient and the strain potential gradient, respectively;
C is the concentration of the migrating species at a certain
depth; DV is the volume (lattice) diffusion coefficient; and
Dstr is the diffusion coefficient due to the strain potential
gradient. The strain potential gradient may be considered
in combination with the effect of stresses on diffusion. It
has been shown that the mobility of diffusion species in-
creases linearly with the stresses [46].

In what follows, we will discuss the effect of strain
potential gradient on the overall effective diffusion kinetics
under SMAT. Three aspects of the phenomenon will be
addressed. The first is associated with the dislocations
generated during the high-rate deformation of the SMAT
surface layer as a result of continual impingements of the
high-velocity hardened steel balls. The second is to account
for the excess vacancies created during the high-rate severe
plastic deformation within the surface layer by SMAT.
Finally, local adiabatic heating from the high-rate plastic
deformation and its effect on the diffusion kinetics will be
discussed.

4.2.1. Dislocation solute-pumping

In the early stage of the treating process, SMAT rapidly
incurs local but severe plastic deformation in the treated
surface of the Co-base [5,37]. While new dislocations and
other defects are generated, the dislocations within the base
will be continually forced to glide, akin to the case in MA
[47]. At the same time, diffusion of the various species from
the impacting media into the Co-base also begins. The cou-
pling of diffusion and dislocation activity at high strain
rates gives rise to a complex picture of the whole process
involved. Due to the more open structure and high-energy
state of the dislocation cores, dislocations have been con-
sidered to be both hosts for impurities and solute atoms,
and solute-pumping channels. Dislocations moving under
external stresses drag the impurity and solute atoms exist-
ing in the core region. At relatively high temperatures, this
dragging effect can serve as a non-diffusive, collective trans-
port mechanism [48]. Eckert et al. [49] and Schwarz [50]
have proposed the mechanisms for mechanical alloying
on the basis of interactions between the dislocation strain
fields and the migrating solutes. Energy surplus from the
solute–core interaction and the relatively open structure
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of the cores cause the solutes to diffuse along the cores, thus
populate the cores by forming linear solute chains. Upon a
stress pulse associated with the ball impact, dislocations
within the Co-base may be displaced, leaving behind a
string of solutes in an otherwise perfect lattice, and are
hence available as ‘‘diffusion pumps’’ again. Locally, the
lattice is left in a state of high super-saturation. Diffusion
in this core region is fast enough for solutes (Fe, Cr, etc.)
to enter in large quantities. This dislocation solute-pump-
ing mechanism contributes in part to the formation of
extended solid solutions. This mechanism may operate over
a space up to hundreds of nanometers in size [51]. Since its
efficiency is proportional to the dislocation density for
pumping effects, and to the velocity and density of mobile
dislocations for the dragging effects, the resulting effect
should be a function of the strain rate [52]. In the present
case, within the relatively large grains in the transition zone
(Fig. 11), especially in ultrafine-grained (UFG) hcp Co-
base with evident dislocation activities as shown in
Fig. 7a, we envision that this mechanism may contribute
to the enhanced diffusion.

4.2.2. Mobile vacancy concentration

Plastic deformation has been found to substantially
increase mobile vacancy concentrations [24,25] in a metallic
material. The vacancy formation energy and internal stress
are the two primary factors controlling vacancy formation.
The former is significantly lowered in nc grains [53]. The
internal stresses due to HPT are believed to produce excess
vacancies by reducing the vacancy formation energy [54].
The rate of vacancy production is also found to be propor-
tional to the imposed strain rate. Kiritani et al. [55] showed
that at room temperature and at a strain rate of �1.0 s�1

vacancy concentration in copper increases to 10�5 within
1.0 s, leading to the formation of vacancy clusters. During
the HPT process of a Cu–Fe filamentary composite, the
mobile vacancy concentration and vacancy diffusion coeffi-
cient are estimated to increase by 15 and four orders of
magnitude, respectively, providing an additional mobile
vacancy production rate of 10�5 s�1 [24]. The presence of
high concentrations of vacancies will naturally increase
the overall diffusion coefficient. This has been held respon-
sible for the atomic level alloying observed in the HPT pro-
cessed composites. The strain rate during SMAT could
reach 103–104 s�1 [5], much higher than accessible via
HPT. It is therefore reasonable to believe that the mobile
vacancy concentration is greatly increased in the SMAT
surface layer. This, in turn, enhances the diffusion kinetics
of the various species.

4.2.3. Temperature rise during deformation

Adiabatic temperature rise, local or global, is generally
anticipated for high-rate plastic deformation [56]. Under
dynamic mechanical loading, the heat generated by the
mechanical work may not have sufficient time to be dissi-
pated, and the material will experience local or global adi-
abatic heating. Such a scenario should apply to the
SMAT process, as well as to MA [33,36]. The temperature
rise will undoubtedly have a strong influence on the diffu-
sivity of solutes and the generation of defects. However, it
appears difficult to evaluate the exact temperature change
on the top SMAT surface due to a lack of precise infor-
mation regarding the strains and stresses in that region.
In spite of the subtle differences between SMAT and
MA, one may still estimate the temperature rise associated
with SMAT by using the thermal analyses for MA. Exper-
imental results showed that the overall temperature rise
during MA can be as high as �215 �C. However, local
temperatures may rise much higher [36]. Based on the
microstructure and chemical analyses presented in this
article, the adiabatic temperature rise during the SMAT
of Co must not be very high, because otherwise grain
growth, recovery of the defected structures, etc. might
have occurred. Nonetheless, since diffusion kinetics is an
exponential function of inverse temperature (i.e. an Arrhe-
nius-type relation), even a moderate temperature rise will
greatly enhance diffusion.

4.3. Formation of the intermetallic phase

In the MA of ductile alloy systems with a negative heat
of mixing, the mechanism of the formation of metastable
intermediate phases has been explained by interdiffusion
reactions of the various components [33]. The Co–Fe sys-
tem has a relatively small negative heat of mixing
(��1.0 kJ mol�1 [57]). Previous work on the MA of ele-
mental Fe and Co powders reported the formation of the
stoichiometric intermetallic phase of Fe50Co50 [58] as a
result of the mixing of the elements by interdiffusion [59].
We propose that, based on the experimental results of the
present study, true alloying on the atomic level can be
achieved through two mechanisms operating concurrently
and complementarily, namely, gradual diffusive intermix-
ing and discontinuous mechanically driven intermixing.
We believe that the deformation-assisted diffusion pro-
cesses play a significant role in controlling the alloying pro-
cess. The formation of the nc intermetallic Co3Fe7 is a
direct consequence of numerous nucleation events with
limited grain growth, as demonstrated by Fig. 4. It is also
conceivable that the continuous intermixing of constituents
will extend the intermetallic layer, and move the transition
zone towards the deeper Co-base.

This work has shown a new route, as schematically
delineated in Fig. 12, that can be used for non-equilibrium
and fast surface modifications by alloying on the surface of
metallic materials. This route eliminates the complex, mul-
tiple-stage preparation of intermetallic materials. It allows
the synthesis of novel nc materials, dependent on the judi-
cious selection of relevant parameters. Such relevant and
important parameters include the composition of the
impinging media (the chemistry of the balls), the base
materials to be modified, and the environment and vacuum
condition of the SMAT chamber. One can regard this
technique as an alternate and complementary method of



Fig. 12. Schematic illustration to delineate the new surface nanocrystal-
lization route through surface alloying. The top image shows the
accumulation of elements (X, Y and Z) from the bombarding media on
the surface of the SMAT base (A). The bottom image displays the final
condition of the treated specimen with a top layer consisting of an
intermetallic phase (XaYbZcAd) of super-high hardness, and perhaps
various solid solutions with different structures depending on the specific
solutes and their concentrations present in the layers.
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surface nanocrystallization, in addition to the three pro-
cesses listed in Ref. [5].

5. Conclusions

We have reported systematic experimental investiga-
tions on the diffusion and alloying process during SMAT
of a Co-base. The major findings and conclusions are sum-
marized below.

Nanocrystalline intermetallic compound Co3Fe7 (grain
size �10 nm) was generated in the treated layer by SMAT
of bulk Co-base. This intermetallic compound layer has a
bcc structure, as confirmed by XRD and TEM analyses.
Through detailed TEM (and especially microdiffraction)
and compositional analyses (using a nanoprobe), a ‘‘transi-
tion zone’’ was found between the Co3Fe7 intermetallic
layer and the hcp Co-base where the extension of solid
solution and a series of phase transformations have
occurred. We envision, based on the experimental results,
that the sequence of phase transformations depends on
Fe content (at.%) and follows the order: from hcp (<4%
Fe) to fcc (4–11% Fe) and finally to bcc (>11% Fe). In this
sequence, the bcc phase was observed closest to the top
SMAT surface and the hcp phase nearest to the Co-base,
with the fcc phase in between.

The hardness profile of the cross-section of the SMAT
specimen shows a precipitous rise of hardness to �13
GPa beyond the interface between the intermetallic layer
and the Co-base. The Co immediately below the interface
has ultrafine grains, with a hardness value more than twice
that of the conventional grain size. A large density of stack-
ing faults was also observed within those UFG Co grains.

Diffusion of Fe, Cr and other species from the hardened
steel balls into the Co-base has taken place to form various
solid solutions, with the topmost layer being the interme-
tallic compound Co3Fe7. Nanoscale composition analyses
by EDX showed that Fe contents are significantly higher
in the GBs and TJs than in the GIs. We therefore believe
that fast diffusion along GBs and TJs dominate in the nc
intermetallic compound. We also believe that the high-den-
sity SFs could contribute to the accelerated diffusion dur-
ing the SMAT process. The combined effects of high-rate
deformation on diffusion kinetics were analyzed in terms
of a dislocation solute-pumping mechanism and much
increased concentration of mobile vacancies, along with
adiabatic temperature rise as a result of the high-rate plas-
tic deformation.

Based on the experimental results and the discussions,
we envisage that the alloying process was ascribed to inter-
mixing at the atomic scale during high-rate severe plastic
deformation. The formation of the intermetallic phase
was a consequence of numerous nucleation events followed
by limited growth.
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