4 research outputs found

    Animal models of chemotherapy-induced peripheral neuropathy: A machine-assisted systematic review and meta-analysis

    Get PDF
    We report a systematic review and meta-analysis of research using animal models of chemotherapy-induced peripheral neuropathy (CIPN). We systematically searched 5 online databases in September 2012 and updated the search in November 2015 using machine learning and text mining to reduce the screening for inclusion workload and improve accuracy. For each comparison, we calculated a standardised mean difference (SMD) effect size, and then combined effects in a random-effects meta-analysis. We assessed the impact of study design factors and reporting of measures to reduce risks of bias. We present power analyses for the most frequently reported behavioural tests; 337 publications were included. Most studies (84%) used male animals only. The most frequently reported outcome measure was evoked limb withdrawal in response to mechanical monofilaments. There was modest reporting of measures to reduce risks of bias. The number of animals required to obtain 80% power with a significance level of 0.05 varied substantially across behavioural tests. In this comprehensive summary of the use of animal models of CIPN, we have identified areas in which the value of preclinical CIPN studies might be increased. Using both sexes of animals in the modelling of CIPN, ensuring that outcome measures align with those most relevant in the clinic, and the animal's pain contextualised ethology will likely improve external validity. Measures to reduce risk of bias should be employed to increase the internal validity of studies. Different outcome measures have different statistical power, and this can refine our approaches in the modelling of CIPN

    Building a Systematic Online Living Evidence Summary of COVID-19 Research

    Get PDF
    Throughout the global coronavirus pandemic, we have seen an unprecedented volume of COVID-19 researchpublications. This vast body of evidence continues to grow, making it difficult for research users to keep up with the pace of evolving research findings. To enable the synthesis of this evidence for timely use by researchers, policymakers, and other stakeholders, we developed an automated workflow to collect, categorise, and visualise the evidence from primary COVID-19 research studies. We trained a crowd of volunteer reviewers to annotate studies by relevance to COVID-19, study objectives, and methodological approaches. Using these human decisions, we are training machine learning classifiers and applying text-mining tools to continually categorise the findings and evaluate the quality of COVID-19 evidence

    Building a Systematic Online Living Evidence Summary of COVID-19 Research

    No full text
    Throughout the global coronavirus pandemic, we have seen an unprecedented volume of COVID-19 researchpublications. This vast body of evidence continues to grow, making it difficult for research users to keep up with the pace of evolving research findings. To enable the synthesis of this evidence for timely use by researchers, policymakers, and other stakeholders, we developed an automated workflow to collect, categorise, and visualise the evidence from primary COVID-19 research studies. We trained a crowd of volunteer reviewers to annotate studies by relevance to COVID-19, study objectives, and methodological approaches. Using these human decisions, we are training machine learning classifiers and applying text-mining tools to continually categorise the findings and evaluate the quality of COVID-19 evidence
    corecore