481 research outputs found

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Search for CP Violation in charm meson decays to final states with at least one neutral particle

    No full text
    CP violation is a phenomenon embedded within the Standard Model to explain the matter anti-matter asymmetry seen in the universe today. Searches for CP violation in hadrons containing charm quarks are interesting in the field of flavour physics because they contain up-type quarks which could be sen- sitive to new interactions/particles that would leave down-type quarks unaffected. Beyond Standard Model (BSM) physics can enhance the magnitude of CP violation in decays of hadrons containing charm quarks, hence measurements of CP asymmetry in charm decays provide an excellent laboratory to probe the precision of the standard model. The decay of neutral charm mesons into a final state containing at least one neutral particle are sen- sitive to beyond standard model physics. One family of decays known as radiative charm decays of the form D0 → V γ (V = φ, ρ, K∗) can have CP asymmetries reaching O(10−3) in the standard model and can be enhanced by an order of magnitude by new particles entering quantum loop transitions which are an inherent feature of radiative decays. Measurement of CP asymmetries and branching fractions of radiative charm decays has never been performed at a hadron collider due to busy collision environment. In this thesis, a method to measure the CP asymmetries and branching fractions of the family of radiative decays is presented as well as a proof of principle on how to extract the signal yield in the D0 → φγ channel by performing multi- dimensional fits to data recorded in the first operational run of the LHC. Including data from the second operational run would allow LHCb to make the most precise measurement of the CP asymme- tries and branching fractions for radiative decays, an unprecedented feat for a hadron collider. This thesis also analyses D0 → π−π+π0 decays which have non-trivial phase space due to contribu- tions from various resonances that contribute to strong phase varying across the Dalitz space. This can provide additional sensitivity to CP violation. The search for CP violation is performed using a statistical method known as the energy test which computes a T value that is converted into a p-value to quantify whether the data is consistent with the null hypothesis of CP symmetry. A p-value of 0.62 was obtained once the energy test was applied to the D0 → π−π+π0 channel which is consistent with the null hypothesis of CP symmetry

    Measurement of the Λb0J/ψΛ\Lambda^0_b\rightarrow J/\psi\Lambda angular distribution and the Λb0\Lambda^0_b polarisation in pppp collisions

    No full text
    International audienceThis paper presents an analysis of the Λb0 {\Lambda}_b^0 → J/ψΛ angular distribution and the transverse production polarisation of Λb0 {\Lambda}_b^0 baryons in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The measurements are performed using data corresponding to an integrated luminosity of 4.9 fb1^{−1}, collected with the LHCb experiment. The polarisation is determined in a fiducial region of Λb0 {\Lambda}_b^0 transverse momentum and pseudorapidity of 1 < pT_{T}< 20 GeV/c and 2 < η < 5, respectively. The data are consistent with Λb0 {\Lambda}_b^0 baryons being produced unpolarised in this region. The parity-violating asymmetry parameter of the Λ → pπ^{−} decay is also determined from the data and its value is found to be consistent with a recent measurement by the BES III collaboration.[graphic not available: see fulltext

    Measurement of the electron reconstruction efficiency at LHCb

    No full text
    International audienceThe single electron track-reconstruction efficiency is determined using a sample corresponding to 1.3 fb11.3~\mathrm{fb}^{-1}of pppp collision data recorded with the LHCb detector in 2017. This measurement exploits B+J/ψ(e+e)K+B^+\to J/\psi (e^+e^-)K^+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B+B^+-meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. The presented method allows LHCb to measure branching fractions involving single electrons with a an electron reconstruction systematic uncertainty below 1%1\%

    Search for Aμ+μA'\to\mu^+\mu^- Decays

    No full text
    International audienceSearches are performed for both promptlike and long-lived dark photons, A′, produced in proton-proton collisions at a center-of-mass energy of 13 TeV. These searches look for A′→μ+μ- decays using a data sample corresponding to an integrated luminosity of 5.5  fb-1 collected with the LHCb detector. Neither search finds evidence for a signal, and 90% confidence-level exclusion limits are placed on the γ–A′ kinetic mixing strength. The promptlike A′ search explores the mass region from near the dimuon threshold up to 70 GeV and places the most stringent constraints to date on dark photons with 214<m(A′)≲740  MeV and 10.6<m(A′)≲30  GeV. The search for long-lived A′→μ+μ- decays places world-leading constraints on low-mass dark photons with lifetimes O(1)  ps

    Measurement of Ξcc++\mathit{\Xi}_{cc}^{++} production in pppp collisions at s=13\sqrt{s}=13 TeV

    No full text
    International audienceThe production of baryons in proton-proton collisions at a centre-of-mass energy of is measured in the transverse-momentum range and the rapidity range . The data used in this measurement correspond to an integrated luminosity of , recorded by the LHCb experiment during 2016. The ratio of the production cross-section times the branching fraction of the decay relative to the prompt production cross-section is found to be , assuming the central value of the measured lifetime, where the first uncertainty is statistical and the second systematic

    Search for the lepton-flavour violating decays B+K+μ±eB^+ \to K^+ {\mu}^{\pm} e^{\mp}

    No full text
    corecore