42 research outputs found

    The quark-photon vertex and meson electromagnetic form factors

    Get PDF
    The ladder Bethe-Salpeter solution for the dressed photon-quark vertex is used to study the low-momentum behavior of the pion electromagnetic and the γπ0γ\gamma^\star \pi^0 \gamma transition form factors. With model parameters previously fixed by light meson masses and decay constants, the low-momentum slope of both form factors is in excellent agreement with the data. In comparison, the often-used Ball-Chiu Ansatz for the vertex is found to be deficient; less than half of the obtained rπ2r_\pi^2 is generated by that Ansatz while the remainder of the charge radius could be attributed to the tail of the ρ\rho resonance.Comment: 4 pages, 2 figures, uses espcrc1.sty, talk presented at PANIC99, Uppsala, Swede

    The Quark-Photon Vertex and the Pion Charge Radius

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion charge radius rπr_\pi is found to be in excellent agreement with the data. When the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex directly from the quark propagator, less than half of rπ2r_\pi^2 is generated. The remainder of rπ2r^2_\pi is seen to be attributable to the presence of the ρ\rho-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure

    Selected nucleon form factors and a composite scalar diquark

    Get PDF
    A covariant, composite scalar diquark, Fadde'ev amplitude model for the nucleon is used to calculate pseudoscalar, isoscalar- and isovector-vector, axial-vector and scalar nucleon form factors. The last yields the nucleon sigma-term and on-shell sigma-nucleon coupling. The calculated form factors are soft, and the couplings are generally in good agreement with experiment and other determinations. Elements in the dressed-quark-axial-vector vertex that are not constrained by the Ward-Takahashi identity contribute ~20% to the magnitude of g_A. The calculation of the nucleon sigma-term elucidates the only unambiguous means of extrapolating meson-nucleon couplings off the meson mass-shell.Comment: 12 pages, REVTEX, 5 figures, epsfi

    Nonperturbative QCD Phenomenology and Light Quark Physics

    Full text link
    Recent progress in modeling QCD for hadron physics through truncated Dyson-Schwinger equations is reviewed. Special emphasis is put upon comparison of dressed quark propagators and the dressed quark-gluon vertex with lattice-QCD results.Comment: 6 pages, 7 figures. Invited talk at the QCD Down Under workshop at the CSSM/University of Adelaide, March 200

    Covariant QCD Modeling of Light Meson Physics

    Get PDF
    We summarize recent progress in soft QCD modeling based on the set of Dyson--Schwinger equations truncated to ladder-rainbow level. This covariant approach to hadron physics accommodates quark confinement and implements the QCD one-loop renormalization group behavior. We compare the dressed quark propagator, pseudoscalar and vector meson masses as a function of quark mass, and the rho -> pi pi coupling to recent lattice-QCD data. The error in the Gell-Mann--Oakes--Renner relation with increasing quark mass is quantified by comparison to the exact pseudoscalar mass relation as evaluated within the ladder-rainbow Dyson-Schwinger model.Comment: Presented at the International School on Nuclear Physics, 24th course: Quarks in Nuclei, Erice, Sicily, September 2002; to be published in Prog. Part. Nucl. Phys.; 6 pages, 6 fig

    High-Spin "Stretched" States Excited in (p,n) Reactions

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit

    High-Spin States in Nuclei Excited Via the (p,n) Reactions

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Neutron Knockout Reactions

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit

    Spectroscopy with the (d,n) Reaction at 80 MeV

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Charge symmetry breaking via rho-omega mixing from model quark-gluon dynamics

    Full text link
    The quark-loop contribution to the ρ0ω\rho^0-\omega mixing self-energy function is calculated using a phenomenologically successful QCD-based model field theory in which the ρ0\rho^0 and ω\omega mesons are composite qˉq\bar{q}q bound states. In this calculation the dressed quark propagator, obtained from a model Dyson-Schwinger equation, is confining. In contrast to previous studies, the meson-qˉq\bar{q}q vertex functions are characterised by a strength and range determined by the dynamics of the model; and the calculated off-mass-shell behaviour of the mixing amplitude includes the contribution from the calculated diagonal meson self-energies. The mixing amplitude is shown to be very sensitive to the small isovector component of dynamical chiral symmetry breaking. The spacelike quark-loop mixing-amplitude generates an insignificant charge symmetry breaking nuclear force.Comment: 11 Pages, 3 figures uuencoded and appended to this file, REVTEX 3.0. ANL-PHY-7718-TH-94, KSUCNR-004-94. [!! PostScript file format corrected. Retrieve by anonymous ftp from theory.phy.anl.gov (130.202.20.190), directory pub: mget wpfig*.ps Three files.
    corecore