248 research outputs found

    Searching for scalar field dark matter with short-range gravity experiments

    Full text link
    The nature of dark matter remains a mystery, although enormous efforts have been made to search for dark matter candidate particles. Scalar field dark matter is one of the most prominent options that is being explored by the various precision experiments, such as gravitational-wave detectors, atomic clocks and gravity experiments. We describe a direct search for scalar field dark matter using the short-range gravity experiments, in which we investigate the possible influences of scalar field dark matter as a function of its mass. By analyzing the torque signals in the torsion pendulum experiments of the HUST-18 and HUST-20, we set new constraints on the large mass regions of scalar field dark matter parameter space. Based on the maximum reach analysis (MRA) method, the constraints on the photon coupling parameter Λγ\Lambda_{\gamma} and electron coupling parameter Λe\Lambda_{\text{e}} improve on limits from previous direct searches in interferometer experiments by more than four orders of magnitude. Further combining the HUST-18 and HUST-20 experiments, we also present the exclusion limits that are not dependent on MRA approximation. This work paves the way for dark-matter search in future HUST experiments, and the projected constraints can be competitive with those limits produced by the MRA method.Comment: 13 pages, 5 fiure

    Influence of EOM sideband modulation noise on space-borne gravitational wave detection

    Full text link
    Clock noise is one of the dominant noises in the space-borne gravitational wave (GW) detection. To suppress this noise, the clock noise-calibrated time-delay-interferometry (TDI) technique is proposed. In this technique, an inter-spacecraft clock tone transfer chain is necessary to obtain the comparison information of the clock noises in two spacecraft, during which an electro-optic-modulator (EOM) is critical and used to modulate the clock noise to the laser phase. Since the EOM sideband modulation process introduces modulation noise, it is significant to put forward the corresponding requirements and assess whether the commercial EOM meets. In this work, based on the typical Michelson TDI algorithm and the fundamental noise requirement of GW detectors, the analytic expression of the modulation noise requirement is strictly derived, which relax the component indicator need compared to the existing commonly used rough assessments. Furthermore, a commercial EOM (iXblue-NIR-10 GHz) is tested, and the experimental results show that it can meet the requirement of the typical GW detection mission LISA in whole scientific bandwidth by taking the optimal combination of the data stream. Even when the displacement measurement accuracy of LISA is improved to 1 pm/ Hz1/2\mathrm{Hz^{1/2}} in the future, it still meets the demand

    Experimental demonstration of picometer level signal extraction with time-delay interferometry technique

    Full text link
    In this work, we have built an experimental setup to simulate the clock noise transmission with two spacecrafts and two optical links, and further demonstrated the extraction of picometer level signal drowned by the large laser frequency noise and clock noise with the data post-processing method. Laser frequency noise is almost eliminated by using the idea of time-delay interferometry (TDI) to construct an equal arm interferometer. Clock asynchronism and clock jitter noise are significantly suppressed by laser sideband transmitting the clock noise using an electro-optic modulator (EOM). Experimental results show a reduction in laser frequency noise by approximately 10^5 and clock noise by 10^2, recovering a weak displacement signal with an average amplitude about 60 picometer and period 1 second. This work has achieved the principle verification of the noise reduction function of TDI technique to some extent, serving the data processing research of space-borne gravitational wave detection

    High-quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways

    Get PDF
    Ice plant (Mesembryanthemum crystallinum), a member of the Aizoaceae family, is a typical halophyte crop and a model plant for studying the mechanism of transition from C3 photosynthesis to crassulacean acid metabolism (CAM). Here, we report a high-quality chromosome-level ice plant genome sequence. This 98.05% genome sequence is anchored to nine chromosomes, with a total length of 377.97 Mb and an N50 scaffold of 40.45 Mb. Almost half of the genome (48.04%) is composed of repetitive sequences, and 24 234 genes have been annotated. Subsequent to the ancient whole-genome triplication (WGT) that occurred in eudicots, there has been no recent whole-genome duplication (WGD) or WGT in ice plants. However, we detected a novel WGT event that occurred in the same order in Simmondsia chinensis, which was previously overlooked. Our findings revealed that ice plants have undergone chromosome rearrangements and gene removal during evolution. Combined with transcriptome and comparative genomic data and expression verification, we identified several key genes involved in the CAM pathway and constructed a comprehensive network. As the first genome of the Aizoaceae family to be released, this report will provide a rich data resource for comparative and functional genomic studies of Aizoaceae, especially for studies on salt tolerance and C3-to-CAM transitions to improve crop yield and resistance

    Prognostic values of GMPS, PR, CD40, and p21 in ovarian cancer

    Get PDF
    Early detection and prediction of prognosis and treatment responses are all the keys in improving survival of ovarian cancer patients. This study profiled an ovarian cancer progression model to identify prognostic biomarkers for ovarian cancer patients. Mouse ovarian surface epithelial cells (MOSECs) can undergo spontaneous malignant transformation in vitro cell culture. These were used as a model of ovarian cancer progression for alterations in gene expression and signaling detected using the Illumina HiSeq2000 Next-Generation Sequencing platform and bioinformatical analyses. The differential expression of four selected genes was identified using the gene expression profiling interaction analysis (http://gepia.cancer-pku.cn/) and then associated with survival in ovarian cancer patients using the Cancer Genome Atlas dataset and the online Kaplan–Meier Plotter (http://www.kmplot.com) data. The data showed 263 aberrantly expressed genes, including 182 up-regulated and 81 down-regulated genes between the early and late stages of tumor progression in MOSECs. The bioinformatic data revealed four genes (i.e., guanosine 5′-monophosphate synthase (GMPS), progesterone receptor (PR), CD40, and p21 (cyclin-dependent kinase inhibitor 1A)) to play an important role in ovarian cancer progression. Furthermore, the Cancer Genome Atlas dataset validated the differential expression of these four genes, which were associated with prognosis in ovarian cancer patients. In conclusion, this study profiled differentially expressed genes using the ovarian cancer progression model and identified four (i.e., GMPS, PR, CD40, and p21) as prognostic markers for ovarian cancer patients. Future studies of prospective patients could further verify the clinical usefulness of this four-gene signature

    The oral cancer microbiome contains tumor space–specific and clinicopathology-specific bacteria

    Get PDF
    The crosstalk between the oral microbiome and oral cancer has yet to be characterized. This study recruited 218 patients for clinicopathological data analysis. Multiple types of specimens were collected from 27 patients for 16S rRNA gene sequencing, including 26 saliva, 16 swabs from the surface of tumor tissues, 16 adjacent normal tissues, 22 tumor outer tissue, 22 tumor inner tissues, and 10 lymph nodes. Clinicopathological data showed that the pathogenic bacteria could be frequently detected in the oral cavity of oral cancer patients, which was positively related to diabetes, later T stage of the tumor, and the presence of cervical lymphatic metastasis. Sequencing data revealed that compared with adjacent normal tissues, the microbiome of outer tumor tissues had a greater alpha diversity, with a larger proportion of Fusobacterium, Prevotella, and Porphyromonas, while a smaller proportion of Streptococcus. The space-specific microbiome, comparing outer tumor tissues with inner tumor tissues, suggested minor differences in diversity. However, Fusobacterium, Neisseria, Porphyromonas, and Alloprevotella were more abundant in outer tumor tissues, while Prevotella, Selenomonas, and Parvimonas were enriched in inner tumor tissues. Clinicopathology-specific microbiome analysis found that the diversity was markedly different between negative and positive extranodal extensions, whereas the diversity between different T-stages and N-stages was slightly different. Gemella and Bacillales were enriched in T1/T2-stage patients and the non-lymphatic metastasis group, while Spirochaetae and Flavobacteriia were enriched in the extranodal extension negative group. Taken together, high-throughput DNA sequencing in combination with clinicopathological features facilitated us to characterize special patterns of oral tumor microbiome in different disease developmental stages

    Simvastatin Reduces Neutrophils Infiltration Into Brain Parenchyma After Intracerebral Hemorrhage via Regulating Peripheral Neutrophils Apoptosis

    Get PDF
    Statins, known for their lipid-lowering effects, also have immunomodulatory properties. This study aims to examine whether systematic simvastatin administration could decrease polymorphonuclear neutrophils (PMNs) infiltration into brain tissue, as well as alleviate neuroinflammation in a rat model of intracerebral hemorrhage (ICH). The ICH model was induced in adult male Sprague–Dawley rats by an injection of autologous blood. Animals randomly received simvastatin (i.p. 2 mg/kg) or vehicle daily from 5 days before ICH until sacrificed. Routine blood counts, brain water content, neurological scoring, immunofluorescence and RT-PCR were conducted to evaluate the anti-inflammatory effect of simvastatin following ICH. Furthermore, flow cytometric and western blotting analysis were implemented for elucidating the mechanisms involved in simvastatin-induced reduction of neutrophil brain-invading. Elevated PMNs count and neutrophil-to-lymphocyte ratio in circulation were detected in rat model of ICH, which was reversed by using simvastatin. Simvastatin effectively alleviated PMNs infiltration and proinflammatory factors release in perihematomal area, as well as attenuated ICH-induced brain edema and neurological deficits. Simvastatin significantly downregulated the expression of antiapoptotic protein-Mcl-1 while increased the level of proapoptotic protein-Bax and cleaved caspase 3 in PMNs. Simvastatin treatment significantly alleviated PMNs brain-infiltrating and subsequent neuroinflammatory reaction after ICH, in part by accelerating peripheral PMNs apoptosis through disorganized the expression of apoptotic related proteins. Our data provided new evidence for simvastatin application on patients with ICH
    • …
    corecore