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Summary
Ice plant (Mesembryanthemum crystallinum), a member of the Aizoaceae family, is a typical

halophyte crop and a model plant for studying the mechanism of transition from C3

photosynthesis to crassulacean acid metabolism (CAM). Here, we report a high-quality

chromosome-level ice plant genome sequence. This 98.05% genome sequence is anchored

to nine chromosomes, with a total length of 377.97 Mb and an N50 scaffold of 40.45 Mb.

Almost half of the genome (48.04%) is composed of repetitive sequences, and 24 234

genes have been annotated. Subsequent to the ancient whole-genome triplication (WGT)

that occurred in eudicots, there has been no recent whole-genome duplication (WGD) or

WGT in ice plants. However, we detected a novel WGT event that occurred in the same

order in Simmondsia chinensis, which was previously overlooked. Our findings revealed that

ice plants have undergone chromosome rearrangements and gene removal during evolution.

Combined with transcriptome and comparative genomic data and expression verification,

we identified several key genes involved in the CAM pathway and constructed a

comprehensive network. As the first genome of the Aizoaceae family to be released, this

report will provide a rich data resource for comparative and functional genomic studies of

Aizoaceae, especially for studies on salt tolerance and C3-to-CAM transitions to improve

crop yield and resistance.

Introduction

Mesembryanthemum crystallinum (ice plant, 2n = 29 = 18)

belongs to the Aizoaceae family, which contains approximately

160 genera and 2500 species. Ice plants are native to southern

and eastern Africa and are now grown worldwide. Ice plants

are vegetables with high nutritional value and health functions.

They are rich in pinitol, which lowers blood sugar and has

potential antidiabetic effects (Drira et al., 2016; Zhang

et al., 2019a). They also contain myo-inositol, which prevents

fatty liver disease (Drira et al., 2016). Ice plants are inherently

more resistant to diseases, insect pests and toxicity compared

with most other vegetables. Therefore, these plants are capable

of healthy growth without the need of pesticides but only a

small amount of fertilizer (Amari et al., 2020; �Sliwa-Cebula

et al., 2020). Ice plants can be eaten fresh as a high-quality

green vegetable.

Soil salinization is a global ecological problem that seriously

affects the growth and production of most crops (Palansooriya

et al., 2019). Clarifying the salt tolerance mechanisms of

halophytes is important for preventing soil salinization and

increasing crop yields (Mishra and Tanna, 2017). Ice plants are

halophytes that convert from C3 photosynthesis to crassulacean

acid metabolism (CAM) under high-salinity stress (Adams

et al., 1998). CAM is a special form of photosynthetic carbon

assimilation that occurs in an estimated 7% of vascular plants

(Crayn et al., 2004; Cushman et al., 2008; Silvera et al., 2005).

CAM is characterized by the absorption and assimilation of

atmospheric carbon dioxide (CO2) catalysed by phospho-

enolpyruvate carboxylase (PEPC) at night, leading to the

accumulation of C4 acids (Gilman and Edwards, 2020). By

absorbing large amounts of CO2 at night, when the evapo-

transpiration rate is low, the water use efficiency of CAM

plants is three to six times higher than that of C4 and C3

plants (Cushman et al., 2008). The genes related to salt

tolerance identified in ice plants are strong candidates for

genetic engineering of C3 crops to improve salt tolerance

(Tsukagoshi et al., 2015).

Several studies have revealed omics level changes in ice plants

in response to salt stress. The first microarray experiment used
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5-week-old and 14-day salt-stressed plants (Cushman

et al., 2008). Using second-generation sequencing, 53 516

cDNAs were detected in the roots of ice plants (Tsukagoshi

et al., 2015). A reference transcriptome was constructed that

contained 37 341 transcripts from control and salt-treated ice

plant epidermal bladder cells (EBCs) (Oh et al., 2015). One

hundred thirty-five conserved microRNAs (miRNAs) have been

identified in the roots of 3-day-old ice plant seedlings (Chih-Pin

et al., 2016). The proteomes and metabolomes of ice plant EBCs

have also been studied (Barkla et al., 2016; Barkla and Vera-

Estrella, 2015; Li et al., 2021). Recently, the critical transition

time for ice plants from C3 to CAM has been determined by

measuring several key attributes, including gas exchange, stom-

atal aperture, titratable acidity, CAM enzyme activity and CAM

gene expression (Kong et al., 2020).

Related transcriptome studies have analysed the changes in

gene expression of ice plants after salt stress treatment (Kong

et al., 2020; Oh et al., 2015; Tsukagoshi et al., 2015). However,

the genome of ice plants has not yet been resolved, which has

hindered studies of molecular regulation mechanisms related to

salt tolerance in ice plants. In the present study, PacBio HiFi,

Illumina sequencing and Hi-C technologies were used to obtain

high-quality ice plant genome sequences. Several key genes for

salt tolerance in ice plants were identified by combined genomic

and transcriptomic analyses. These data provide an important

reference for research on salt-tolerant genomics and molecular

biology of ice plants.

Results

Ice plant genome sequencing, assembly, and assessment

De novo ice plant genome sequencing was performed using

PacBio HiFi, Illumina and Hi-C technologies (Figure 1a, Table 1).

First, the ice plant genome was estimated by the K-mer method

using 90.43 Gb of data from Illumina sequencing (Tables 1 and

S1). The estimated size of the ice plant genome was 394.89 Mb,

and the heterozygosity rate was 0.10% (Figure S1, Table S1). The

PacBio HiFi sequencer was adopted to generate 18.77 Gb of data

with an average of 47.539 coverage depth (Tables 1 and S3). In

total, 109.20 Gb (276.539) of ice plant DNA sequences gener-

ated from the Illumina and PacBio platforms were used to

perform the preliminary assembly. The results indicated that the

cumulative length of the contig was 377.96 Mb, and that of

contig N50 was 6.18 Mb (Tables S4–S6).
Hi-C technology was used to improve the ice plant genome

assembly. High-quality sequences (61.80 Gb, 156.509) were

obtained by Illumina sequencing (Table 1). A Hi-C contact map

was used to divide the distinct regions of each chromosome

(Figure 1b). Finally, the assembled genome size was approxi-

mately 377.97 Mb, with contig N50 and scaffold N50 reaching

6.18 Mb and 40.45 Mb, respectively (Table 2). In total,

370.61 Mb sequences were anchored to nine chromosomes in

the ice plant, accounting for 98.05% of the assembled genome

(Figure 1c, Table S7).

The reads mapping rate exceeded 99.11%, indicating the

assembled ice plant genome was relatively complete (Table S8).

The core eukaryotic gene mapping approach (CEGMA) and

benchmarking universal single-copy orthologs (BUSCO) methods

were used to assess the quality of assembled genomes and

annotations. The CEGMA results showed that 96.77% (241) of

core eukaryotic genes were detected in the assembled genome

(Table S9). The BUSCO results showed that 98.0% of 1641 genes

were found in the ice plant genome (Table S10).

Genome annotation

Repetitive sequences accounted for 48.04% of the estimated ice

plant genome (Figure 1c, Table S11). Most repetitive sequences

were long-terminal repeats (LTRs; 121.34 Mb), accounting for

32.11% of the genome (Figure S2, Table S11). Long interspersed

nuclear elements (LINE) and DNA transposons only accounted for

6.40% and 7.42% of the ice plant genome, respectively. Most

genes were located in the terminal regions of each chromosome,

displaying a similar trend to that of DNA transposable elements.

However, Copia and Gypsy retrotransposons were almost

inversely distributed on each chromosome compared with the

genes (Figure 1c).

Among the 24 234 annotated ice plant genes (Figures S3, S4,

Tables S12, S13), InterPro, Swiss-Prot, Kyoto encyclopedia of

genes and genomes (KEGG) and non-redundant protein data-

bases showed functional evidence for 24 064 (99.30%) genes,

with 15 512 genes annotated in all databases (Figure S5,

Table S14). Concerning RNA, 4269 rRNAs, 2446 miRNAs, 1054

tRNAs and 889 snRNAs were found, in total accounting for

0.91% of the ice plant genome (Figure S6, Table S15).

Gene family expansion analysis and divergence time
estimation

We detected gene families in ice plant, nine Caryophyllales

species, two other eudicots (Arabidopsis thaliana and Vitis

vinifera), and Oryza sativa (Figure 2a, Table S16). In total,

28 686 gene families were identified in the ice plant and the

other 12 examined species (Figure 2b, Table S17). There were

14 330 gene families in the ice plant, which was lower than

that in Atriplex hortensis (15950), Chenopodium quinoa

(15886), Spinacia oleracea (15020), and Chenopodium pallidi-

caule (14729) (Figure 2b, Table S17). However, only 12 835 and

12 894 gene families were detected in A. thaliana and Beta

vulgaris, respectively. Common and specific gene family analyses

among the 13 species was performed using a Venn diagram

(Figure 2b). A total of 252 single-copy and 6108 common gene

families were found among the 13 species (Figure 2b,

Table S17). The 468 ice plant species-specific gene families

exceeded the numbers for C. pallidicaule (103), B. vulgaris (258)

and Hylocereus undatus (447) but was less than that of the

other nine species (Figure 2b).

Gene family contraction and expansion were explored in ice

plant and the 12 other representative species (Figure 2c). In the

ice plant, we detected 106 gene family expansions, which was

more than that of the closely related species, H. undatus (92)

(Figure 2c). The largest number of gene family expansions was

found in C. quinoa (888), followed by A. hortensis (453), and S.

oleracea (306). Only 29 gene family contractions were found in

ice plants, which was more than in Fagopyrum tataricum (6)

and S. chinensis (14), but fewer than that seen in other

Caryophyllales species (Figure 2c). We performed a phyloge-

netic analysis and divergence time estimation using single-copy

gene families among the 13 species (Figure 2c). The ice plant

had the closest relationship with H. undatus among all

examined species. It diverged from H. undatus 30.6–47.4
million years ago (Mya) (Figure 2c). The divergence time

between Caryophyllales and the other species was 84.0–99.9
Mya (Figure 2c).
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Evolution and polyploidization of the ice plant genome

We explored the genomic evolution of ice plants using the rate of

synonymous nucleotide substitution (Ks) within syntenic blocks

among ice plants, grapes, and nine other Caryophyllales species

(Figure 2d-e). In the Ks density plot, only one peak was detected

in the ice plant genome. This indicates that only one polyploidiza-

tion event occurred in the ice plant, which was an ancient whole-

genome triplication (WGT) event shared with grapes and most

eudicots (Jaillon et al., 2007). Therefore, there were no recent

whole-genome duplication (WGD) or WGT events in ice plants.

Surprisingly, two peaks were detected in the Ks density plot of

the S. chinensis genome, indicating that two polyploidization

events had occurred in this species (Figure 2e). However, only one

polyploidization event was found in a previous report, indicating

that one recent WGT event in S. chinensis was overlooked. We

also verified that S. chinensis experienced two rounds of WGT

events by combining dot plot and syntenic analysis data

(Figure 3a-d). Based on the ancient WGT event times that

occurred in most eudicots, the recent WGT event in S. chinensis
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Figure 1 Morphology, Hi-C contact map, and genome features of the ice plant genome. (a) Morphology of seedlings, leaves and seeds of ice plant. Scale

bars, 2 cm. (b) All-by-all interactions of all nine chromosomes obtained by Hi-C in the ice plant genome. (c) The distribution of various repetitive sequences

and gene density on each chromosome in ice plants. The window size was set to 200 Kb with non-overlapping regions. i to iv, distribution of TRF, SSRs,

SINE and LINE, respectively; v to viii, density of DNA repeats, Copia transposons, Gypsy transposons and genes, respectively. ix, nine chromosomes of the ice

plant. The inner curve lines showed the collinear gene blocks in the ice plant. The grey, blue and red colours indicate 5–10, 10–30 and >30 gene pairs in

collinear blocks, respectively.

Table 1 Summary of ice plant genome sequencing data

libraries

Insert size

(bp)

Total data

(G)

Read length

(bp)

Sequence

coverage (X)

Illumina

reads

350 90.43 150 229.00

PacBio

reads

– 18.77 – 47.53

Sub-total 109.20 276.53

Hi-C – 61.80 – 156.50

Total – 171.00 – 433.03

Table 2 Statistics of ice plant genome assembly quality

Type

Length Number

Contig (bp) Scaffold (bp) Contig Scaffold

Total 377 960 088 377 968 988 269 180

Max 24 134 815 47 886 399 – –

Number ≥ 2000 – – 269 180

N50 6 175 963 40 449 012 18 5

N60 5 222 265 38 645 384 25 6

N70 4 618 777 38 543 744 33 7

N80 3 539 318 37 272 660 42 8

N90 1 695 433 35 725 216 57 9
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occurred between 50.60–57.42 Mya (Ks = 0.91). This was later

than the time of the recent WGD event in F. tataricum (53.03–
59.95 Mya; Ks = 0.95) but earlier than the times of the recent

WGD events in H. undatus (46.33–52.38 Mya; Ks = 0.83) and A.

cruentus (29.59–33.44 Mya; Ks = 0.53) (Figure 2e, Table S18).

Syntenic and gene retention analysis of the ice plant
genome

We identified 100 intra-genomic collinear blocks in an ice plant,

containing 2079 collinear genes (Table S19). We then mapped

the ice plant gene sequences onto nine other Caryophyllales

genomes to infer their inter-genomic collinearity (Figures 3b,

S7–S10). Among the Caryophyllales species, the most collinear

blocks were between the ice plant and C. quinoa (305). This

might reflect the genomic fusion that occurred in C. quinoa

according to a previous report (Zou et al., 2017) (Figure S7). We

also found that the number of collinear blocks between ice plants

and species that underwent recent WGD or WGT events was

greater than that of the other species (Figures 3b, S7–S10). For
example, there were more collinear blocks between the ice plant

and the four species that underwent recent WGD or WGT events,

including Amaranthus cruentus (223 collinear blocks), F. tatar-

icum (217), H. undatus (192) and S. chinensis (189) (Figures 3b,

S8, and S9). However, there were fewer collinear blocks between
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Figure 2 Gene family, phylogenetic and divergence time analyses. (a) The gene numbers of each category in the ice plant and 12 representative species.

(b) Common and specific-specific gene families in ice plant and the other 12 species. (c) Expansion/contraction of gene family and divergence time

estimation. The green and purple pies depict the ratios of the numbers of expansion and contraction gene families, respectively. The numbers on the nodes

represent the species divergence time, with the confidence range list in brackets. The grey squares, hexagons and circles represent whole-genome

duplication (WGD), whole-genome triplication (WGT) and genome fusion, respectively. (d) The density of synonymous nucleotide substitutions per

synonymous site (Ks) among collinear genes between ice plant (Mcr) and other related species. (e) The density plot of Ks among collinear genes within ice

plant (Mcr) and each other related species.
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ice plant and the other four species that had not undergone

recent WGD or WGT events, including A. hortensis (181),

S. oleracea (166), B. vulgaris (142) and C. pallidicaule (131)

(Figures S7, S9, S10). Furthermore, the largest number of large

collinear blocks (gene pairs >200) were between the ice plant and

H. undatus (44), followed by C. quinoa (40) and S. oleracea (32).

Syntenic analysis indicated that most species underwent chro-

mosome rearrangement after divergence (Figures 3b, S7–S10).
To a certain extent, the syntenic results reflect the genetic

relationship between ice plants and other Caryophyllales species.

The ratio of the collinear regions between the ice plant and

grape was 1:1 because no recent genome duplication has

occurred in the ice plant. However, the ratio between ice plants

and the three species (H. undatus, A. cruentus, and F. tataricum)

was 1:2 because of the recent WGD event detected in these three

species (Figures 3b, 4a, Table S20). The ratio of ice plants to S.

chinensis was 1:3 because of the recent WGT event detected in

this study. For example, the end of chromosome 5 in the ice plant

was collinear with S. chinensis chromosomes 8, 14 and 18, and it

was also collinear with H. undatus chromosomes 3 and 11

(Figure 3a, b). Microsynteny analysis was also consistent with the

global syntenic analysis, showing a similar ratio between ice

plants and other species. For example, the 4.19–4.46 Mb of

chromosome 4 in the ice plant was perfectly collinear with grape,

H. undatus and S. chinensis (Figure 3d).

We conducted gene retention analysis of the ice plant genome

in homologous regions by comparing it with other species.

Different regions on the chromosome showed divergent reten-

tion levels (Figures 4a, b, S11–S19, Table S21). Grossly, the

highest retention rate of collinear ice plant genes was 51.85%

(a)

(b) (c)

(d)

Figure 3 Homologous dot plot and syntenic analyses between ice plant and other representative species. (a) The homologous dot plot between selected

ice plant chromosomes (Chr4 and Chr5) and S. chinensis (Sch) chromosomes. Three syntenic regions were indicated by rectangles numbered by 1, 2 and 3

in circles with different colours. An additional novel WGT in S. chinensis was identified via syntenic comparison with ice plant, which was previously

overlooked. (b) Syntenic diagram between ice plant and other related species. Syntenic blocks were marked using grey lines. Large syntenic blocks (>200

gene pairs) are highlighted in orange. Blue lines indicate an exemplar syntenic relationship between ice plant and other related species. (c) The syntenic

depth analysis between ice plant and S. chinensis also showed the 1:3 ratios between ice plant and S. chinensis. (d) Microsyntenic comparison of genes

between ice plant and other related species. A representative syntenic relationship revealed that one ice plant region matched one region in grape, two

regions in H. undatus (Hun) and three regions in S. chinensis (Sch). Rectangles showed annotated genes with orientation on the same strand (blue) and the

reverse strand (green). The grey lines connected collinear gene pairs, with three regions highlighted in blue, purple and orange colours as example.
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using H. undatus as a reference, followed by C. pallidicaule

(46.60%), and C. quinoa (43.66%) (Figure 4c, Table S21).

However, the average retention rate of different chromosomes

was only 9.66% when F. tataricum was the reference. We

counted the number of syntenic gene pairs between the ice plant

and the other nine Caryophyllales genomes. The most syntenic

gene pairs were found between the ice plant and A. hortensis

(5989 gene pairs), followed by C. quinoa (5735), S. chinensis

(5656), B. vulgaris (5527), S. oleracea (5350), H. undatus (5177),

C. pallidicaule (4975) and A. cruentus (4783). However, only

2426 syntenic gene pairs were identified between the ice plant

and F. tataricum. The collective results revealed large-scale

genome fractionation and instability of the ice plant genome

after its split from these plants.

Exploring key genes in the CAM pathway

The CAM pathway is highly plastic under salt stress in ice plants,

which makes it a good representative model for studying the

transition mechanism from C3 to CAM (Cushman et al., 2008;

Kong et al., 2020). Here, we attempted to identify the genes

involved in regulating the C3 to CAM pathway by combining

genomic and transcriptomic analyses (Table S22). Twenty genes

encoding six main enzymes involved in the CAM pathway were

identified in the ice plant (Figure 5a). Most nodes in the pathway

had more gene copies in ice plants, including seven malate

dehydrogenase (MDH), five malic enzyme (ME), three phospho-

enolpyruvate carboxylase (PEPC) and three carbonic anhydrase

(CA) genes.

To further explore the expression pattern of 20 CAM-related

genes in the ice plant, we used three RNA-seq data sets from

different tissues (E1) and applied salt treatment for different times

(E2) or at different concentrations (E3) (Figure 5b, Tables S23–
25). The E1 data set was generated in this study, and the E2 and

E3 data sets were collected from previous studies (Kong

et al., 2020; Tsukagoshi et al., 2015). Among the 20 differen-

tially expressed genes (DEGs), ten, seven, and one were detected

in E1, E2 and E3 experiments, respectively. Under salt treatment

(E2 and E3), seven DEGs were identified, including four MDH and

three PEPC genes. Furthermore, the expression level of the PEPC

gene (Mc08G01316) was higher in the salt-treated plant tissue

than in the control, regardless of day or night during days 5 to 7

(Figure 5c). The expression trend of the Mc08G01316 gene was

similar to that of the PEPC gene (Contig20312) identified in a

previous study (Kong et al., 2020). The expression patterns of the
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other two PEPC genes (Mc07G01375, Mc06G00895) were the

opposite of Mc08G01316. However, these two genes were not

detected in a previous study (Kong et al., 2020). Similarly, the

expression levels of the two MDH genes (Mc03G00793,

Mc07G01398) were lower with salt treatment than in the

control, regardless of timing (i.e., day or night).
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Figure 5 Overview of crassulacean acid metabolism (CAM) pathway in ice plant. (a) The CAM pathway map in the ice plant. Blue colours showed the key

enzymes involved in the CAM pathway. The numbers in parenthesis are the number of genes encoding the corresponding enzymes in the ice plant. CA,

carbonic anhydrase; PEPC, phosphoenolpyruvate carboxylase; PEPCK, PEPC kinase; MDH, malate dehydrogenase; ME, malic enzyme; PPDK, pyruvate

phosphate kinase. (b) Expression profile heatmap of CAM-related genes in ice plant. The expression values (FPKM) were transformed by log2. The RNA-seq

data set of the experiment (E1) was obtained in this study, and the data sets of E2 and E3 were obtained according to the previous reports. The red circle

indicates the DEGs in corresponding experiments (fold-change >2, q-value <0.01). (c) Expression level of PEPC andMDH genes under salt treatment from E2
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number of each CAM-related gene in the network. (f) Functional enrichment analysis of DEGs involved in the network using KEGG (q-value <0.05).
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Interaction network construction for key genes in the ice
plant CAM pathway

Based on the identified CAM-related genes and their expression

patterns, we constructed an interaction network for these genes

and the genes they regulate in ice plants (Figure 5d). A total of

805 gene pairs formed the network according to the Pearson

correlation coefficients (¦PCC¦ >0.95) (Table S26). Among these

connections, only 10 represent regulatory interactions between

CAM-related genes. The other 795 connections represent inter-

actions between CAM-related genes and other DEGs in the ice

plant genome (Table S26). This network contained nine CAM-

related genes (five DEGs) and 285 other DEGs (Figure 5d,

Table S27). Among these genes, the PEPC gene Mc07G01375

had the most connections (163) with other genes, followed by

the ME gene Mc04G00899 (149 connections) and the MDH gene

Mc01G01317 (131 connections) (Figure 5d, e, Table S27). These

results suggest that genes with more connections might play a

core role in the CAM pathway in ice plants.

To explore the functions of the genes involved in the network

constructed in the ice plant, we performed enrichment analysis.

We identified 10 significantly enriched terms (q-value <0.05). The
most significantly enriched term was pyruvate metabolism (q-

value = 2.08 9 10�11), followed by carbon metabolism, carbon

fixation in photosynthetic organisms and citrate cycle (TCA cycle)

(Figure 5f, Table S28). Most enriched terms were related to the

CAM pathway in plants.

Morphological detection and verification of CAM
pathway genes in the ice plant

Ice plants reportedly survive high-salinity conditions because their

EBCs sequester up to 1 M sodium to adjust to osmotic stress

(Cushman et al., 1989). The seedlings showed obvious wilt

symptoms after 1 day of salt treatment. This phenotype became

more pronounced in the cotyledons with increasing treatment

time, while the mature leaves examined on days 3 and 6

displayed minor changes, and the whole plants seemed to be

more energetic compared to day 1 (Figure 6a). The fresh weight

to dry weight ratio after 1, 3 and 6 days of salt stress showed a

downward trend compared with that on day 0 (Figure 6b). CAM

plants assimilate carbon dioxide at night, accumulate malic acid

and transfer it to vacuoles for storage, resulting in an increase in

the hydrogen ion concentration in vacuoles. Therefore, the

change in titratable acidity in leaves at the start (8:00 pm) and

end (8:00 am) was determined as a vital indicator of the presence

or absence of CAM activity. On day 0, titratable acidity was very

low and did not fluctuate at the end of the day and night

(Figure 6c). On day 1 of salt treatment, with obvious phenotypic

differences, the nocturnal acid content at dawn was significantly

higher than that on day 0. Consistent with this result, on day 0,

the stomatal aperture was larger in the day and smaller at night,

whereas the plant showed inversible stomatal movement on days

1, 3 and 6 after stress (Figure 6d). Therefore, we inferred that the

plant quickly shifted from C3 to CAM photosynthesis after 1 day

of salt treatment in our study.

In ice plants, genes with CAM-related functions exhibit stress-

induced/putative circadian expression patterns following salt

stress (Cushman et al., 2008). The aforementioned analysis

showed that the expression of four MDH and three PEPC genes

was largely altered during the transition of ice plants from C3

photosynthesis to CAM (Figure 5b). Among these, the expression

levels of two MDH genes decreased during the transition phase

compared with the control, and two PEPCs showed opposite

expression trends: one was time dependently induced, and the

other was time dependently repressed with salinity stress

(Figure 5c). Several PEPC and MDH genes were selected for

qRT-PCR to validate the expression patterns of the individual

genes. Among the four genes encoding MDH, the expression

level of Mc01G01317 was relatively low and repressed by salinity

stress at midday in all salt treatments (Figure 6e). Mc07G01398

was rapidly induced more than twice, at midday and midnight on

day 1. However, compared with day 0, the change in the later

stages was not significant. The transcript abundance of the other

two MDH genes, Mc07G01448 and Mc03G00793, increased on

day 1 both at midday and midnight; the genes maintained a

higher expression state on days 3 and 6 after salt treatment

(Figure 6e), which correlated with the nocturnal accumulation of

acidity (Figure 6c). Remarkably, Mc03G00793 showed a putative

circadian expression pattern that peaked at midnight and was

more pronounced on day 6 of salinity, suggesting that this gene

may be specialized in CAM function. Mc08G01316 and

Mc07G01375 encode two PEPC genes (the key enzymes

responsible for assimilating CO2 during the night in CAM plants).

In our study, two PEPC genes were immediately induced by salt

treatment on day 1 and relatively abundant transcripts were

maintained on subsequent days (Figure 6f). In addition, they both

exhibited an apparent circadian fluctuation in expression level,

but in opposite directions. Mc08G01316 had peak expression in

the middle of the day, while the expression level of Mc07G01375

peaked at subjective midnight (Figure 6f).

In addition, we detected CAM-related genes in 22 other

species (11 C3, 7 C4 and 4 CAM species) by comparative analysis

(Figure 6g). Interestingly, we detected 111 genes in the C4 plant

Saccharum spontaneum, which was far more than in any other

species (Figure 6g, Table S29). Only eight genes were found in

another C4 plant, Amaranthus hypochondriacus. Among the C3

plants examined, the number of CAM genes ranged from 18 to

49, C4 plant genes ranged from 8 to 111 and CAM plant genes

Figure 6 Morphological detection and CAM pathway genes verification in ice plant. (a) Representative images of plants during the course of 0, 1, 3 and

6 days of salt treatments. (b) Fresh weight to dry weight ratio. (c) Levels of titratable acidity of leaves measured at the start (8:00 am) and end (8:00 pm) of

the photoperiod. Each value is mean � standard deviation. The asterisks above the bars indicate Student’s t test significance in comparison with day 0

(*P < 0.05; **P < 0.01). (d) The representative images of stomata under different salt treatment time courses. Expression profiles of representative MDH

and PEPC genes determined at midday and midnight in leaves ofM. crystallinum under different stages of salt stress. (e) The relative expression level of four

MDH genes under different stages of salt stress by qRT-PCR. (f) The relative expression level of two PEPC genes under different stages of salt stress by qRT-

PCR. (g) The heatmap of the CAM pathway genes (PPDK, PEPCK, MDH, CA, PEPC and ME) number in ice plant and other 22 related species, including C3,

C4 and CAM plants. The gene number in each species was transformed by log2. (h) Maximum-likelihood trees of PEPC genes that were constructed using

the amino acid sequences with 1000 bootstrap repeats in ice plant and other 22 related species.
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ranged from 21 to 46 (Figures S20–S25, Table S29). This

phenomenon indicates that the number of genes involved in

the CAM pathway varies widely among different species, despite

belonging to the same metabolic type. Interestingly, the number

of phosphoenolpyruvate carboxylase kinase (PEPCK) genes in the

basal angiosperm plant Amborella trichopoda was much higher

than that of the other examined species. This result provides

abundant data resources and ideas for the evolution of the PEPCK

gene in plants. Cluster analysis performed according to the

number of CAM-related genes revealed that ice plants clustered

with C3 and CAM plants and were most similar to the CAM plant

Ananas comosus (pineapple) (Figure 6g). In addition, the phylo-

genetic trees of genes encoding the six main enzymes indicated

that most genes in the ice plant had a close relationship with

CAM or C3 plants. In particular, three PEPC genes in ice plants

were distributed in different branches in the phylogenetic tree,

indicating their probable function in the C3 and CAM pathways

(Figure 6h). To some extent, these results support the position

that ice plants are C3 and CAM-facultative plants.

Discussion

The ice plant is a member of the Aizoaceae family, which belongs

to the order Caryophyllales. The genomes of several species in this

order have been sequenced and released, including 14 species

from Amaranthaceae, four species from Droseraceae, four

species from Polygonaceae, two species from Cactaceae and

one species each from Simmondsiaceae, Caryophyllaceae and

Phytolaccaceae. To date, no species in Aizoaceae has been

sequenced and reported. The ice plant genome data in this study

will provide a rich resource for conducting comparative and

functional genomic studies in Aizoaceae and other families of the

order Caryophyllales.

The CAM pathway is highly plastic in ice plants (Cush-

man, 2001; Cushman et al., 2008; Cushman and Bohn-

ert, 1999). Under non-stressed conditions, the ice plant shows

C3 photosynthesis and can complete its entire life cycle in the C3

mode without exhibiting net CO2 absorption at night (Winter and

Holtum, 2007). However, it exhibits all the physiological charac-

teristics of a CAM plant when grown under various stress

conditions such as high salinity, water deficit or high light

(Matsuoka et al., 2018; Wakamatsu et al., 2021; Winter and

Holtum, 2005). The inducibility of CAM and the biochemical

properties of C3 and CAM in the same cells of ice plants make it

an excellent model for studying the transition mechanism from

C3 to CAM (Bohnert and Cushman, 2000; Kong et al., 2020;

Kore-eda et al., 2013; Winter and Holtum, 2014).

The annual succulent ice plant is a typical model halophyte

used to explore the basic biochemical, physiological and molec-

ular mechanisms of salt and water stress responses in plants

(Barkla et al., 2009; Bohnert and Cushman, 2000). Ice plants can

adjust their metabolic pathway from C3 to CAM in response to

various stresses (Adams et al., 1998; Oh et al., 2015; Winter and

Holtum, 2007).

In vascular plants, PEPC belongs to a multigene family, with

each member encoding a specific functional enzyme (O’Leary

et al., 2011). In CAM species, at least one form of the gene

specializes in CAM function, which catalyses nocturnal CO2

assimilation into C4-dicarboxylic acids (Gehrig et al., 1998;

Lepiniec et al., 1993). The results of phylogenetic analyses of

PEPC genes imply a single origin before the divergence of

bacterial and plant lineages (Izui et al., 2004; Westhoff and

Gowik, 2004). CAM-specific PEPC genes were thought to have

evolved first because of a lack of water supply from the non-

photosynthetic role of PEPC by local gene duplications, which

could then allow the subsequent functional specialization of

genes divided into different clades (Gehrig et al., 2005; Taybi

et al., 2004). In the present study, three PEPC genes were

assigned to different clades, indicating functional divergence.

MDH is a ubiquitous enzyme in plants with different genes,

with roles in a series of metabolic processes according to its

subcellular location (Gietl, 1992). In particular, cytosolic MDH

converts oxaloacetate to l-malate in CAM plants (Holtum and

Winter, 1982). In our study, the expression levels of four MDH

genes were determined during the transition from C3 to CAM,

indicating different expression patterns of the genes. Among

these, Mc03G00793 presented a putative circadian fluctuation in

mRNA abundance that peaked at subjective midnight, implying

its specific function in CAM photosynthesis.

Conclusions

Here, we report a high-quality and chromosomal-level ice plant

genome. This is the first released genome of an Aizoaceae family

member. The total length of the genome is 377.97 Mb compris-

ing 24 234 genes. Although no recent WGD or WGT events

occurred in ice plants, we detected a novel WGT event that was

overlooked in a previous report on S. chinensis. Several key genes

involved in the CAM pathway were identified and a comprehen-

sive network was constructed for CAM-related genes in ice

plants. The ice plant genome sequences, together with the

comparative genomic analysis data, will provide rich resources for

studies of gene functions and genome evolution in ice plants and

other Aizoaceae plants.

Materials and methods

DNA sequencing and genome size estimation

Genomic DNA was extracted from ice plant leaves using a

QIAGEN kit, according to the standard procedure. DNA purity

was determined using a NanoDropTM One spectrophotometer.

DNA quantification was performed using a Qubit� 3.0 Fluorom-

eter. Sequencing libraries were sequenced using the Illumina

(USA) and PacBio (Pacific Biosciences, USA) platforms according

to previous reports (Song et al., 2021b; Song et al., 2022). Three

sequencing strategies were used. In the first, two paired-end

libraries were constructed with fragments of 350 bp and

sequenced on the Illumina platform. In the second strategy,

third-generation sequencing libraries were constructed and

sequenced using the PacBio HiFi platform according to the

manufacturer’s protocol. In the third strategy, Hi-C technology

combined with Illumina sequencing was used to assist genome

assembly. The ice plant genome size was estimated according to

the 17 nt k-mers using Illumina sequencing data (Marcais and

Kingsford, 2011).

Data quality control and de novo genome assembly

Third-generation data quality control was performed using SMRT

Link (v11.0) software (https://www.pacb.com/support/software-

downloads/). The original data were polymerase reads of

dumbbell-shaped structural sequences containing adapters at

both ends. Subreads were obtained after the sequences were

interrupted by the adapters and the adapter sequences were

filtered out. Subreads were filtered using the minimum length
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criterion of 50. On the basis of subreads, ccs software (https://

github.com/PacificBiosciences/ccs) was used to generate high-

precision HiFi reads. The set parameters were min-passes = 3 and

min-rq = 0.99; the quality of all read values was above Q20.

Ice plant genome assembly was performed using the Hifiasm

program (v0.16.1-r375), which uses a new haplotype assembly

algorithm (Cheng et al., 2021). Hifiasm was developed based on

the characteristics of PacBio HiFi reads. Therefore, it is more

prominently used than other software in the assembly of HiFi

data. Hifiasm assembly is divided into three steps. The first step is

error correction, in which Hifiasm uses all HiFi reads for all-vs.-all

comparisons and error correction. The second is construction of

the assembly graph. After correction, a phased string graph was

constructed according to the overlap between the sequences. The

third, is the generation of assembly sequence, in which Hifiasm

selects one side of the bubble to build the primary assembly.

Hi-C data-assisted assembly and genome assessment

Hi-C data quality control includes alignment control and HiCUP

quality control (Wingett et al., 2015). A Perl script was used for

alignment control for three reasons. First, reads were removed

using adapters. Second, reads with a ratio of N (N means that the

base could not be determined) > 10% were removed. Third,

when the number of low-quality (<5) bases contained in the

single-end sequencing read exceeded 20% of the read length,

the paired reads were removed. HiCUP quality control analysis

was performed in three steps: (i) reads were aligned to the

reference genome, (ii) the hicup_filter in the HiCUP software was

used to filter the sequences in the alignment and the hicup_dedu-

plicator in HiCUP was used to filter duplicate contacts and (iii) the

ratio of the number of valid and unique read pairs after

deduplication to the number of read pairs after quality control

was calculated.

Based on Hi-C technology, the ALLHiC program was used to

assist in ice plant genome assembly (Zhang et al., 2019b).

Clustered bam files and genomes from ALLHiC were visualized

using the Juicebox program (Durand et al., 2016). Manual correc-

tion was performed according to the strength of chromosome

interaction. The genome was obtained at the chromosomal level.

Finally, the assembled genome was assessed using BUSCO

(embryophyta_odb10) and CEGMA software (Manni et al., 2021;

Parra et al., 2007). Genomes and second-generation data were

aligned using BWA software (Li and Durbin, 2009). The alignment

rate, genome coverage and depth of reads were determined to

assess the integrity of the assembly and uniformity of sequencing.

Genome annotation

Repeated sequences were detected using de novo prediction and

homologous alignment. First, a repeat sequence database was

built using RepeatModeler, LTR_FINDER (Xu and Wang, 2007),

RepeatScout (Price et al., 2005) and Piler (Edgar and

Myers, 2005) for de novo estimation. Second, repeated

sequences were predicted using Repeatmasker. The repeatpro-

teinmask and Repeatmasker programs were used to conduct

homologous sequence alignment by searching the RepBase

database (Bao et al., 2015; Tarailo-Graovac and Chen, 2009).

Tandem repeat sequences were detected using TRF software

(Benson, 1999). snRNAs and miRNAs were identified using

INFERNAL (Nawrocki and Eddy, 2013). tRNA and rRNA genes

were detected using tRNAscan-SE and BLAST (E-value <1e-5),
respectively (Chan and Lowe, 2019). Simple sequence repeat

(SSR) was identified according to the previous reports (Song

et al., 2021a; Song et al., 2021c).

Protein-coding gene prediction and functional
annotation

De novo prediction was performed using three software pro-

grams: GlimmerHMM (Stanke and Morgenstern, 2005), SNAP

(Korf, 2004) and Augustus (http://bioinf.uni-greifswald.de/

augustus/). Homologous prediction was conducted using Gene-

wise and BLAST (E-value <1e-5) (Birney et al., 2004; Camacho

et al., 2009). The predicted results were integrated using the

IntegrationModeler (EVM) pipeline (Haas et al., 2008). Finally, the

results of EVM gene prediction were corrected by combining

them with transcriptomic data using the PASA software (Haas

et al., 2003). Several protein databases, including TrEMBL,

SwissProt, InterPro and KEGG, were used to conduct gene

annotation with an E-value cut-off of 1e-5. The distribution of

genes, repeat sequences and non-coding genes on each chro-

mosome was illustrated using TBtools (Chen et al., 2020).

Detection of gene families and expansion analysis

Gene families were detected using OrthoFinder (Emms and

Kelly, 2019). First, alternative splicing was filtered for each

species. Only the longest transcript was retained for gene family

analysis. Second, genes with amino acid lengths of <50 were

removed. Third, all-vs-all BLAST was performed using the protein

sequences to obtain the similarity relationships of all examined

species (E-value <1e-5). Finally, single-copy and multi-copy gene

families were detected by conducting cluster analysis based on

the MCL graph clustering algorithm (-Inflation = 1.5). Gene

family contraction and amplification were performed using CAFE

software (�p 0.05 -t 4 -r 10 000; De Bie et al., 2006).

Phylogeny and divergence time analysis

Genes from single-copy gene families were used to perform

multiple sequence alignments using MUSCLE (Edgar, 2004). The

RAxML program (�m PROTGAMMAAUTO -p 12345 -x 12 345 -#

100 -f ad -T 20) was used to construct a phylogenetic tree of 13

species based on the maximum-likelihood (ML) model (Sta-

matakis, 2014). Single-copy gene families, combined with the

species trees, were used to estimate the divergence time

using the Mcmctree method of the PAML program (burn-

in = 50 000; sample frequency = 50; sample number = 10 000)

(Yang, 2007). Time correction points were obtained from the

TimeTree database (Kumar et al., 2017).

RNA-seq and public data set collection

RNA was extracted from the roots, stems and leaves of ice plants.

The purity of the RNA(OD260/280) was determined using a

NanoDrop spectrophotometer. RNA concentration was quantified

using Qubit, and RNA integrity was detected using an Agilent

2100 device. RNA-seq libraries were constructed using an

AMPure XP kit (Beckman, China), according to the manufac-

turer’s instructions. RNA sequencing was performed on an

Illumina HiSeq 4000 with 150-bp paired-end reads.

Two public RNA-seq data sets were downloaded from NCBI

and DDBJ databases to comprehensively explore the expression

patterns of genes under salt stress. The raw reads of the second

data set from guard cells of control and salt-treated ice plants

were collected at 12 am and 12 pm from 5 to 7 days after salt

treatment (SRX3878746) (Kong et al., 2020). Raw reads of third
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data sets were from ice plants under salt treatments with 0,

140, 250 and 500 mM NaCl (ADRP002316) (Tsukagoshi

et al., 2015).

RNA-seq analysis

The quality of all raw reads, including our RNA-seq data and

public data sets, was assessed using the FastQC program (https://

github.com/s-andrews/FastQC). The trim-galore program was

used to filter bad quality reads and remove adaptors (https://

anaconda.org/bioconda/trim-galore). Finally, the clean reads were

mapped to the ice plant genome using HISAT2 (� p 12 � x

Index) (Kim et al., 2015). The expression value of each gene was

normalized to fragments per kilobase of exon per million mapped

fragments (Trapnell et al., 2010). Analysis of DEGs was per-

formed using DESeq with parameters set as ¦log2(fold-change)¦
>1 and P-adj. < 0.05 (Anders and Huber, 2010; Wu et al., 2021).

Genome collinearity and visualization

Genome collinearity was assessed using the WGDI program,

which integrates an improved ColinearScan version (‘-icl’ model)

(Sun et al., 2021; Wang et al., 2006). First, homologous genes

within or between two species genomes were identified using the

Blastp program (E-value <1e-5). Then, the ‘–icl’ model was

adopted to run the WGDI for collinearity detection. The maximal

gap length of collinearity was set to 50, and over 30 gene families

were deleted before running ‘–icl.’ A dot plot of collinear genes

was generated using WGDI (Sun et al., 2021).

Using the grape genome as a reference, we built collinear

alignments for each species. Theoretically, each grape gene has

two additional collinear genes because of a WGT event (Jaillon

et al., 2007). In grapes, the cell of the column was filled with a

gene name if a collinear gene was detected. The cell was marked

with a dot if a collinear gene was absent. We also assigned the

corresponding number of columns according to the situation of

the WGD or WGT events for ice plants and other species. Finally,

collinear alignment was visualized using a Circos plot, which was

created using the –ci module in WGDI (Sun et al., 2021). Synteny

and microsynteny among different species were visualized using

MCscan in Python (Tang et al., 2008). The duplicate_gene_clas-

sifier program MCScanX was used to predict duplicated gene

types (Wang et al., 2012).

Ks calculation and distribution fitting

The MUSCLE program was used to perform alignment using

homologous amino acid sequences (�maxiters 1 –diags –sv –
distance1 kbit20-3) (Edgar, 2004). The PAL2NAL program was

used to convert the protein alignment into a codon alignment

according to the CDS sequence (Suyama et al., 2006). Finally, Ka

and Ks were calculated using the yn00 program of PAML with the

Nei-Gojobori method according to the previous reports (Pei

et al., 2021a; Pei et al., 2021b; Yang, 2007). In collinear blocks,

the median values of Ks between homologous genes were used

to classify blocks caused by duplication events. Ks was illustrated

on a collinear block of different colours using the WGDI (Sun

et al., 2021).

The distribution of Ks density was determined using three

modules of WGDI: Kspeaks (�kp), PeaksFit (�pf), and KsFigures

(�kf). The curve of the Ks density distribution was drawn using

Kspeaks. Multipeak fitting was then performed using PeaksFit.

Finally, KsFigures were used to convert multiple fitted density

curves into one graph.

CAM pathway genes analyses

Based on the Pfam annotation, CAM-related genes were iden-

tified using accession numbers with E-values <1e-5 (Table S22).

The chromosomal distribution of CAM-related genes was deter-

mined using TBtools (Chen et al., 2020). The protein sequences

of CAM-related genes were aligned using the Mafft program (�-

maxiterate 1000 --localpairs) (Nakamura et al., 2018). An ML

tree was then constructed using FastTree using the JTT model

with a bootstrap set of 1000 (Price et al., 2009; Yu et al., 2022).

PCCs between CAM-related genes and DEGs were calculated

based on gene expression using Perl scripts. Based on ¦PCC¦
>0.95, an interaction network was constructed using Gephi

software with the algorithm ForceAtlas2 (https://gephi.org)

(Jacomy et al., 2014). KEGG functional enrichment analysis was

performed using the OmicShare platform (q-value <0.05) (https://
www.omicshare.com/tools).

Morphological detection and CAM pathway gene
verification

Plant growth and salt stress

Ice plants were grown in a growth chamber under 200 lmol/m2/s

white light with a 12 h (26 °C) day/12 h (18 °C) night cycle.

After 1 week, seedlings were transferred to 32-ounce containers

and nourished using 0.59 Hoagland’s solution every 4 days. To

induce CAM, salt treatment was conducted on day 28 after

sowing by irrigation with 0.5 mM NaCl in 0.59 Hoagland’s

solution once daily. Before salt treatment (day 0, control) and at

1, 3 and 6 days of stress, the second pair of mature leaves was

harvested at midday and midnight for three replicate plants.

Stomatal aperture assay

For stomatal movement observation, a part of the abaxial

epidermis was peeled with tweezers at 4:00 am and 4:00 pm

at each treatment time point. The peeled epidermal strips were

immediately placed onto a microscope slide and observed under a

Leica DM6000 B microscope.

Titratable acidity measurement

Mature leaves were collected from control and salt-treated plants

at the end of the light and dark periods. After measuring fresh

weight, the samples were frozen in liquid nitrogen and ground to

a fine powder using a mortar and pestle. For organic acid

extraction, the powder was homogenized in 20% ethanol, boiled

until volume was reduced by half, suspended in water to the

original volume and boiled to half original volume. Finally, the

sample was returned to its original volume using distilled water

and cooled to room temperature. Titratable acidity was deter-

mined by titration with 5 mM NaOH, using phenolphthalein as an

indicator. The volume of NaOH was recorded, which could be

switched to leaf titratable acidity in the form of lmol H+ g�1 fresh

weight.

RNA extraction and RT-qPCR

Total RNA was isolated using RNAiso Plus (TaKaRa Bio, Japan).

Integrity and quality were assessed by electrophoresis and

spectrophotometry. First-strand cDNA was synthesized using

the PrimeScript RT Reagent Kit, according to the manufacturer’s

instructions. The resulting cDNA was diluted 1:5 in double-

distilled water before RT-qPCR analysis using an Agilent MX3005P
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qPCR System Cycler. Each sample was run in triplicate and

normalized by comparison with FNR1. Primers for the PEPC and

MDH genes are listed in Table S30.
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