20 research outputs found

    精神科病院における朝顔栽培の取り組みとその効果

    Get PDF
    今回、A施設が開発中の朝顔栽培のプログラムに沿ってB精神科病院にて朝顔栽培の取り組みを行い、園芸作業前後の対象者の気分の変化について調査した。調査はB精神科病院C病棟に入院中で研究協力の説明を受けた後、同意が得られた患者20名を対象とし、フェイススケール(気分最高5点~最悪1点)を用いて行った。その結果、初回を除き、2回目以降の園芸作業において有意に値が上昇しており、リラックス効果が得られていた。また、対象者自身が、朝顔栽培に興味を持ち、楽しみながら育てることができ、朝顔栽培を通して、愛他性、責任感が芽生え、忍耐力・持続力の増強、自尊心の向上、人の役に立つという有用感の体験につながった

    CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums

    Get PDF
    Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums

    精神疾患患者による朝顔栽培への参加継続要因の検討

    Get PDF
    精神科病院に入院中の精神疾患患者38名を対象に、フェイススケールを用いて園芸作業による気分の変化の調査、および参加観察を行った。園芸作業への参加継続群と非継続群を比較した結果、継続群は“園芸作業が気分の安定に効果的な群”、非継続群が“園芸作業が気分の安定に効果的でない群”であることが明らかとなった。継続群、非継続群の結果より、朝顔栽培への参加が継続できない要因は、精神症状が安定していないことが考えられた。また、参加継続要因は、精神症状が安定していること、朝顔の成長を予期できること、やりがいを見いだせること、他者との集団行動がとれること、前年度から継続して参加していることの5点であると考えられた

    Vieraea. Vol. 35

    No full text
    State-of-the-art high power laser facilities present numerous potential applications, including the generation of ultra-short and low emittance ion beams. Understanding the underlying laser-plasma interaction physics and resulting scaling to ultra-high intensities is of great importance for optimising such sources. We therefore present experimental data of proton acceleration in a sheath field using the ultra-high intensity J-KAREN-P laser (10 J, 40 fs, 5x1021 W/cm2), allowing investigation at the high-intensity frontier.A repetitive tape target was used to generate proton beams at a 0.1 Hz repetition rate limited only by the laser, allowing a systematic and comprehensive scan over laser parameters. Our laser-target system is able to regularly produce protons in excess of 40 MeV at the full repetition rate. We will demonstrate a slower than expected increase in proton energy with decreasing focal spot size, show that this is due to a reduced sheath lifetime for tight focal spots, and propose a new model which successfully predicts proton energies over a large range of focal spot sizes.We demonstrate that the laser accelerated electron temperature depends not only on laser intensity but also on focal-spot size, in which the restriction of the transverse acceleration distance causes saturation of the electron temperature at increasingly small foci. However, the accelerated electron beam profile becomes more collimated and asymmetric with small focal spots. Measurements of the proton beam show only limited benefit to using increasingly small focal spot sizes, and the best scaling for achieving higher maximum proton energies from sheath acceleration is achieved with increasing the pulse energy, rather than reducing the spot size or pulse length.Optics & Photonics International Congress 2019 (HEDS2019

    Experimental investigation of electron heating and proton acceleration scaling to ultra-high intensity pulses

    No full text
    The behaviour of high power laser-plasma interaction from solid targets, and the resultant ion generation, at the extreme intensities available at state-of-the-art laser facilities is an important topic for realising potential applications. We will present experimental data investigating electron heating and proton acceleration in a sheath field using the ultra-high intensity, high contrast J- KAREN-P laser. Using a 10 J, 40 fs pulse focused to an intensity ~5x1021 Wcm-2 resulted in generation of protons up to 40 MeV at 0.1 Hz from a 5 μm steel tape target. The high repetition rate of the tape target allowed large statistically relevant investigations into the scaling of the electron and proton beam with laser energy, pulse length and spot size.We demonstrate that the laser accelerated electron temperature depends not only on laser intensity but also on focal-spot size, in which the restriction of the transverse acceleration distance causes saturation of the electron temperature at increasingly small foci. However, the accelerated electron beam profile becomes more collimated and asymmetric with small focal spots. Measurements of the proton beam show only limited benefit to using increasingly small focal spot sizes, and the best scaling for achieving higher maximum proton energies from sheath acceleration is achieved with increasing the pulse energy, rather than reducing the spot size or pulse length.HEDS 201

    Electron heating and ion acceleration in sheaths from ultra-high intensity laser-solid interactions

    No full text
    The behaviour of high power laser-plasma interaction from solid targets, and the resultant ion generation, at the extreme intensities available at state-of-the-art laser facilities is an important topic for realising potential applications. We will present experimental data investigating electron heating and proton acceleration in a sheath field using the ultra-high intensity, high contrast J- KAREN-P laser. Using a 10 J, 40 fs pulse focused to an intensity ~5x1021 Wcm-2 resulted in generation of protons up to 40 MeV at 0.1 Hz from a 5 μm steel tape target. The high repetition rate of the tape target allowed large statistically relevant investigations into the scaling of the electron and proton beam with laser energy, pulse length and spot size.We demonstrate that the laser accelerated electron temperature depends not only on laser intensity but also on focal-spot size, in which the restriction of the transverse acceleration distance causes saturation of the electron temperature at increasingly small foci. However, the accelerated electron beam profile becomes more collimated and asymmetric with small focal spots. Measurements of the proton beam show only limited benefit to using increasingly small focal spot sizes, and the best scaling for achieving higher maximum proton energies from sheath acceleration is achieved with increasing the pulse energy, rather than reducing the spot size or pulse length.Imperial College London Plasma Physics Group Semina

    Experimental investigation of sheath- driven proton acceleration scaling to the ultra-short pulse, ultra-high intensity regime

    No full text
    The behaviour of high power laser-plasma interaction from solid targets, and the resultant ion generation, at the extreme intensities available at state-of-the-art laser facilities is an important topic for realising potential applications. We will present experimental data investigating electron heating and proton acceleration in a sheath field using the ultra-high intensity, high contrast J- KAREN-P laser. Using a 10 J, 40 fs pulse focused to an intensity ~5x1021 Wcm-2 resulted in generation of protons up to 40 MeV at 0.1 Hz from a 5 μm steel tape target. The high repetition rate of the tape target allowed large statistically relevant investigations into the scaling of the electron and proton beam with laser energy, pulse length and spot size.We demonstrate that the laser accelerated electron temperature depends not only on laser intensity but also on focal-spot size, in which the restriction of the transverse acceleration distance causes saturation of the electron temperature at increasingly small foci. However, the accelerated electron beam profile becomes more collimated and asymmetric with small focal spots. Measurements of the proton beam show only limited benefit to using increasingly small focal spot sizes, and the best scaling for achieving higher maximum proton energies from sheath acceleration is achieved with increasing the pulse energy, rather than reducing the spot size or pulse length.JPS butsuri gakka

    Scaling of electron heating and proton acceleration to ultra-high intensities

    No full text
    The behaviour of high power laser-plasma interaction from solid targets, and the resultant ion generation, at the extreme intensities available at state-of-the-art laser facilities is an important topic for realising potential applications. We will present experimental data investigating electron heating and proton acceleration in a sheath field using the ultra-high intensity, high contrast J- KAREN-P laser. Using a 10 J, 40 fs pulse focused to an intensity ~5x1021 Wcm-2 resulted in generation of protons up to 40 MeV at 0.1 Hz from a 5 μm steel tape target. The high repetition rate of the tape target allowed large statistically relevant investigations into the scaling of the electron and proton beam with laser energy, pulse length and spot size.We demonstrate that the laser accelerated electron temperature depends not only on laser intensity but also on focal-spot size, in which the restriction of the transverse acceleration distance causes saturation of the electron temperature at increasingly small foci. However, the accelerated electron beam profile becomes more collimated and asymmetric with small focal spots. Measurements of the proton beam show only limited benefit to using increasingly small focal spot sizes, and the best scaling for achieving higher maximum proton energies from sheath acceleration is achieved with increasing the pulse energy, rather than reducing the spot size or pulse length.AAC 201
    corecore