132 research outputs found
Individual Feed Intake of Transition Cows and Their Daily Activity Measures of Temperature, Eating, Rumination, Resting, and Activity Times
Fifteen transition dairy cows bearing CowSensor® ear tags were monitored during 14 days before and after calving to assess temperature and behavior outcomes recorded by the sensors, in addition to actual individual dry matter and as-fed feed intake. The sensors—compared with reported visual observation studies—underestimated eating and resting times, but rumination time was estimated reasonably accurately. Expected changes in rumination (decreased acutely before calving and increased linearly to day 14) and general activity (increased acutely just before calving) were observed. More studies are warranted to determine how to use these activity monitors in detecting health disorders of cows that affect milk yield
Can a “Zero Land Use” Diet Maintain Milk Production of Dairy Cows?
Dairy cows can convert feeds unsuitable and unpalatable for humans into milk and play a key role in food security. Feed efficiency is usually calculated as the ratio between nutrients secreted in milk and nutrient intake, but this metric does not address concerns about human/livestock feed competition. This study aimed to evaluate whether cows fed a “zero land use” diet (diet that does not affect land used for production of human food), with or without rumen-protected amino acids, can maintain milk compared to a conventional lactation diet. Twelve second-lactation dairy cows were used in a 3×3 Latin square design experiment to evaluate 1) conventional total mixed ration (TMR) for lactating cows (CON), containing 25.7% byproduct feeds; 2) a TMR comprised of zero land use feedstuffs (ZLU); and 3) ZLU with top-dressed rumen-protected amino acids (ZLU-AA). Cows fed ZLU or ZLU-AA diets consumed less dry matter (P \u3c 0.01) and decreased (P \u3c 0.01) milk and energy-corrected milk yield of cows. Feed efficiency was similar between cows fed CON and ZLU but it was reduced (P \u3c 0.01) when cows were fed ZLU-AA. In a scenario reflecting current food system byproduct use, cows fed ZLU diets showed greater (P \u3c 0.01) human-edible metabolizable energy and protein recovery in milk than cows fed CON. Zero land use diets did not maintain milk production of late-lactation cows either with or without rumen-protected amino acids
Productivity of a Triticale and Crimson Clover Winter Cover Crop for Dairies
The potential for a winter cover crop to align with agronomic objectives and to support milk production was evaluated at the Kansas State University Dairy Teaching and Research Center, Manhattan, KS. August planting of a triticale and crimson clover blend following corn silage harvest resulted in production of more than 3.5 tons of dry matter prior to subsequent corn planting. After ensiling, the impact of triticale/crimson clover silage (TCS) on milk production was evaluated in 48 mid- to late-lactation Holstein cows. Cows were blocked by parity (1 and 2+) and milk production, then randomly assigned within block to treatment sequence and pen. The crossover design consisted of two 21-day periods, with 17 days of diet adaptation and 4 days of sampling. Treatments were a diet which included TCS at 15% of diet dry matter (DM) and a control ration in which TCS was primarily replaced by alfalfa and grass hays. The TCS diet included additional bypass soybean meal in an attempt to balance metabolizable protein supply across diets. Samples of rations, feed refusals, and milk were obtained daily, and milk yield was recorded. The TCS diet decreased dry matter intake (48.4 vs. 55.9 ± 3.4 lb/d; P = 0.02), but did not alter milk yield (P = 0.97); therefore, feed efficiency was greater for the TCS diet (P = 0.04). Milk fat concentration tended to increase on the TCS diet (P \u3c 0.10) whereas milk lactose yield tended to be lesser for TCS (P = 0.09), but other milk components analyzed (milk protein, MUN, SCC) did not differ between diets (P \u3e 0.15). Utilization of TCS also impacted the dairy’s nutrient management plan, as the winter forage harvest removed 40 and 340 lb/a of phosphorus and potassium, respectively. Overall, the blend of triticale and crimson clover as a winter cover crop produced good quality silage that maintained high milk production while also removing key nutrients from the soil to benefit nutrient management planning
Type 2 diabetes mellitus alters cardiac mitochondrial content and function in a non-obese mice model
Type 2 diabetes mellitus (T2DM) is associated with an increase of premature appearance of several disorders such as cardiac complications. Thus, we test the hypothesis that a combination of a high fat diet (HFD) and low doses of streptozotocin (STZ) recapitulate a suitable mice model of T2DM to study the cardiac mitochondrial disturbances induced by this disease. Animals were divided in 2 groups: the T2DM group was given a HFD and injected with 2 low doses of STZ, while the CNTRL group was given a standard chow and a buffer solution. The combination of HFD and STZ recapitulate the T2DM metabolic profile showing higher blood glucose levels in T2DM mice when compared to CNTRL, and also, insulin resistance. The kidney structure/function was preserved. Regarding cardiac mitochondrial function, in all phosphorylative states, the cardiac mitochondria from T2DM mice presented reduced oxygen fluxes when compared to CNTRL mice. Also, mitochondria from T2DM mice showed decreased citrate synthase activity and lower protein content of mitochondrial complexes. Our results show that in this non-obese T2DM model, which recapitulates the classical metabolic alterations, mitochondrial function is impaired and provides a useful model to deepen study the mechanisms underlying these alterations.This study was supported by Coordenacao de aperfeicoamento de pessoal de nivel superior (CAPES), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)
Influence of polymer-coated slow-release urea on total tract apparent digestibility, ruminal fermentation and performance of Nellore steers
Objective Two experiments were performed to evaluate the effects of coated slow-release urea on nutrient digestion, ruminal fermentation, nitrogen utilization, blood glucose and urea concentration (Exp 1), and average daily gain (ADG; Exp 2) of steers. Methods Exp 1: Eight ruminally fistulated steers [503±28.5 kg body weight (BW)] were distributed into a d 4×4 Latin square design and assigned to treatments: control (CON), feed grade urea (U2), polymer-coated slow-release urea A (SRA2), and polymer-coated slow-release urea B (SRB2). Dietary urea sources were set at 20 g/kg DM. Exp 2: 84 steers (350.5±26.5 kg initial BW) were distributed to treatments: CON, FGU at 10 or 20 g/kg diet DM (U1 and U2, respectively), coated SRA2 at 10 or 20 g/kg diet DM (SRA1 and SRA2, respectively), and coated SRB at 10 or 20 g/kg diet DM (SRB1 and SRB2, respectively). Results Exp 1: Urea treatments (U2+SRA2+SRB2) decreased (7.4%, p = 0.03) the DM intake and increased (11.4%, p<0.01) crude protein digestibility. Coated slow-release urea (SRA2+SRB2) showed similar nutrient digestibility compwared to feed grade urea (FGU). However, steers fed SRB2 had higher (p = 0.02) DM digestibility compared to those fed SRA2. Urea sources did not affect ruminal fermentation when compared to CON. Although, coated slow-release urea showed lower (p = 0.01) concentration of NH3-N (−10.4%) and acetate to propionate ratio than U2. Coated slow-release urea showed lower (p = 0.02) urinary N and blood urea concentration compared to FGU. Exp 2: Urea sources decreased (p = 0.01) the ADG in relation to CON. Animals fed urea sources at 10 g/kg DM showed higher (12.33%, p = 0.01) ADG compared to those fed urea at 20 g/kg DM. Conclusion Feeding urea decreased the nutrient intake without largely affected the nutrient digestibility. In addition, polymer-coated slow-release urea sources decreased ruminal ammonia concentration and increased ruminal propionate production. Urea at 20 g/kg DM, regardless of source, decreased ADG compared both to CON and diets with urea at 10 g/kg DM
Genome-Wide Analysis Reveals a Major Role in Cell Fate Maintenance and an Unexpected Role in Endoreduplication for the Drosophila FoxA Gene Fork Head
Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis
Scientific writing: a randomized controlled trial comparing standard and on-line instruction
<p>Abstract</p> <p>Background</p> <p>Writing plays a central role in the communication of scientific ideas and is therefore a key aspect in researcher education, ultimately determining the success and long-term sustainability of their careers. Despite the growing popularity of e-learning, we are not aware of any existing study comparing on-line vs. traditional classroom-based methods for teaching scientific writing.</p> <p>Methods</p> <p>Forty eight participants from a medical, nursing and physiotherapy background from US and Brazil were randomly assigned to two groups (n = 24 per group): An on-line writing workshop group (on-line group), in which participants used virtual communication, google docs and standard writing templates, and a standard writing guidance training (standard group) where participants received standard instruction without the aid of virtual communication and writing templates. Two outcomes, manuscript quality was assessed using the scores obtained in Six subgroup analysis scale as the primary outcome measure, and satisfaction scores with Likert scale were evaluated. To control for observer variability, inter-observer reliability was assessed using Fleiss's kappa. A post-hoc analysis comparing rates of communication between mentors and participants was performed. Nonparametric tests were used to assess intervention efficacy.</p> <p>Results</p> <p>Excellent inter-observer reliability among three reviewers was found, with an Intraclass Correlation Coefficient (ICC) agreement = 0.931882 and ICC consistency = 0.932485. On-line group had better overall manuscript quality (p = 0.0017, SSQSavg score 75.3 ± 14.21, ranging from 37 to 94) compared to the standard group (47.27 ± 14.64, ranging from 20 to 72). Participant satisfaction was higher in the on-line group (4.3 ± 0.73) compared to the standard group (3.09 ± 1.11) (p = 0.001). The standard group also had fewer communication events compared to the on-line group (0.91 ± 0.81 vs. 2.05 ± 1.23; p = 0.0219).</p> <p>Conclusion</p> <p>Our protocol for on-line scientific writing instruction is better than standard face-to-face instruction in terms of writing quality and student satisfaction. Future studies should evaluate the protocol efficacy in larger longitudinal cohorts involving participants from different languages.</p
- …